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SELF-BÄCKLUND CURVES IN CENTROAFFINE GEOMETRY AND LAMÉ’S
EQUATION

MISHA BIALY, GIL BOR, AND SERGE TABACHNIKOV

Abstract. Twenty five years ago U. Pinkall discovered that the Korteweg-de Vries
equation can be realized as an evolution of curves in centroaffine geometry. Since
then, a number of authors interpreted various properties of KdV and its generaliza-
tions in terms of centroaffine geometry. In particular, the Bäcklund transformation
of the Korteweg-de Vries equation can be viewed as a relation between centroaffine
curves.

Our paper concerns self-Bäcklund centroaffine curves. We describe general prop-
erties of these curves and provide a detailed description of them in terms of elliptic
functions. Our work is a centroaffine counterpart to the study done by F. Wegner of
a similar problem in Euclidean geometry, related to Ulam’s problem of describing the
(2-dimensional) bodies that float in equilibrium in all positions and to bicycle kine-
matics.

We also consider a discretization of the problemwhere curves are replaced by poly-
gons. This is related to discretization of KdV and the cross-ratio dynamics on ideal
polygons.
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1. Introduction

Themotivation for this work is the interpretation of the Korteweg-de Vries equation
in terms of centroaffine geometry. This growing body of work started with U. Pinkall’s
paper [38], see [15, 25, 26, 46] for a sampler.
In [44], the Bäcklund transformation of the KdV equation is interpreted as a relation

between centroaffine curves. We start with a very brief description of this approach to
KdV.
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Let 𝛾(𝑡) be a parametrized smooth curve in the affine plane with a fixed area form.
The curve is centroaffine if theWronski determinant is constant: [𝛾(𝑡), 𝛾′(𝑡)] = 1 for all
𝑡 ∈ ℝ. The group SL2(ℝ) acts on centroaffine curves, and we shall also consider the
moduli space of such curves.
Unless specified otherwise, we assume that the curves are𝜋-anti-periodic: 𝛾(𝑡+𝜋) =

−𝛾(𝑡) for all 𝑡. That is, the curve is closed, centrally symmetric and 2𝜋-periodic (the last
condition, if not satisfied by a centrally symmetric centroaffine curve, can be arranged
by an appropriate rescaling.)
The rationale for assuming that the curves are centrally symmetric is as follows. An

orientation preserving diffeomorphism of ℝℙ1 admits a unique area preserving and
homogeneous of degree 1 lifting to a diffeomorphism of the punctured plane. The im-
age of the unit circle under such a diffeomorphism is a centrally symmetric star-shaped
curve, and projectively equivalent diffeomorphisms correspond to SL2(ℝ)-equivalent
curves. See [36] for details.
Our results can be extended to non-centrally symmetric curves, but we do not dwell

on it in this paper.
Given a centroaffine curve, one has 𝛾″(𝑡) = 𝑝(𝑡)𝛾(𝑡)where𝑝 is a𝜋-periodic potential

function of the Hill operator−𝑑2/𝑑𝑡2+𝑝(𝑡). In the language of centroaffine geometry,
𝑝 is the centroaffine curvature of the curve 𝛾 (alternatively, some authors call −𝑝 the
centroaffine curvature, but we shall adopt the plus sign convention).
For example, 𝛾(𝑡) = (cos 𝑡, sin 𝑡) has 𝑝(𝑡) = −1. This unit circle and its SL2(ℝ) im-

ages are trivial examples of centroaffine curves. We refer to these curves as centroaffine
conics.
A tangent vector to a centroaffine curve 𝛾(𝑡), in the space of 𝜋-anti-periodic cen-

troaffine curves, is given by a vector field along it of the form 𝑔(𝑡)𝛾(𝑡)+𝑓(𝑡)𝛾′(𝑡), where
𝑓, 𝑔 are 𝜋-periodic. Taking the derivative of the centroaffine condition [𝛾, 𝛾′] = 1 with
respect to this vector field we obtain 𝑓′ +2𝑔 = 0. Thus such a vector field has the form

(1) 𝑉 𝑓 ≔ −12𝑓
′(𝑡)𝛾(𝑡) + 𝑓(𝑡)𝛾′(𝑡),

where 𝑓 is a 𝜋-periodic function. Pinkall observed in [38] that the evolution of the
curves 𝛾(𝑡) with the potential function 𝑝(𝑡) under the vector field 𝑉𝑝 is a centroaffine
version of the Korteweg-de Vries equation: the potential evolves according to the equa-
tion

̇𝑝 = −12𝑝
‴ + 3𝑝′𝑝

(where dot is the time derivative).
We say that two centroaffine curves, 𝛾(𝑡) and 𝛿(𝑡), are 𝑐-related if [𝛾(𝑡), 𝛿(𝑡)] = 𝑐 for

all 𝑡. See Figure 1. It is shown in [44] that this relation is a geometric realization of the
Bäcklund transformation for the KdV equation.
In this paper we are mostly interested in self-Bäcklund centroaffine curves, the

curves 𝛾(𝑡) for which there exist 𝛼 ∈ (0, 𝜋) and a constant 𝑐 such that

(2) [𝛾(𝑡), 𝛾(𝑡 + 𝛼)] = 𝑐 for all 𝑡.

For example, the centroaffine conics are self-Bäcklund for every choice of 𝛼 with 𝑐 =
sin 𝛼. To exclude trivial cases, we assume that 𝑐 ≠ 0. We call 𝛼 in equation (2) the
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Figure 1. Bäcklund transformation: As the end points of the line
segment 𝐴𝐵 trace the two curves, 𝑂𝐴 and 𝑂𝐵 sweep area with the
same rate and the area of the shaded triangle 𝑂𝐴𝐵 remains constant

rotation number of a self-Bäcklund curve. See Figure 2 for examples of self-Bäcklund
curves.

Figure 2. Self-Bäcklund curves (blue), with winding numbers 1
(left) and 3 (right). A line segment (green) moves with its end points
sliding along the curve, forming a constant area triangle with the ori-
gin, while the midpoint of the line segment traces a curve (red), al-
ways tangent to the line segment at its midpoint. The two curves
depicted here are members of an infinite family of self-Bäcklund
curves described explicitly in Section 4 in terms of the Weierstrass
℘-function. For more images and animations, see [12].

An analogous problem in Euclidean geometry was thoroughly studied relatively re-
cently. The problem is to describe the closed smooth arc length parametrized curves
𝛾(𝑡) ⊂ ℝ2 for which there exist constants 𝑠 and ℓ such that |𝛾(𝑡 + 𝑠) − 𝛾(𝑡)| = ℓ for all
𝑡. For example, a circle is a trivial solution to this problem.
Although the full solution of this problem is not available yet, there is a wealth of

results, including many non-trivial examples of such curves. See [11, 41, 43, 47–49] for
a sampler.
This problem originated in two seemingly unrelated theories. First, such curves are

the boundaries of 2-dimensional bodies that float in equilibrium in all positions – to
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describe such bodies (in all dimensions) is S. Ulam’s problem in flotation theory, see
[34, problem 19].
Second, an interesting problem in the study of bicycle kinematics is to describe the

pairs of front and rear bicycle tracks for which one cannot determine the direction of
the bicycle motion. The above mentioned curves appear in this problem as the front
tracks in such ambiguous pairs; they are referred to as bicycle curves. See [23] for a
survey of this approach to bicycle kinematics.
This geometric problem is intimately related to another completely integrable equa-

tion of soliton type, the filament – or binormal, or smoke ring, or local induction –
equation; more precisely, to the planar filament equation

̇𝛾 = 1
2𝑘

2𝑇 + 𝑑𝑘
𝑑𝑠 𝑁,

where 𝛾(𝑠) is an arc length parameterized plane curve, dot means the time evolution,
𝑘 is the curvature, and 𝑇 and 𝑁 is a Frenet frame along 𝛾.
Two arc length parametrized curves, 𝛾(𝑡) and 𝛿(𝑡), are in bicycle correspondence if

the length of the segment 𝛾(𝑡)𝛿(𝑡) is constant and the velocity of its midpoint is aligned
with the segment for all 𝑡. This correspondence is a geometric realization of the Bäck-
lund transformation of the planar filament equation, and in this sense, bicycle curves
are self-Bäcklund.
We must say more about the work of Franz Wegner, cited above. He discovered

a large variety of bicycle curves (or solutions to the 2-dimensional Ulam’s problem),
explicitly described in terms of elliptic functions. Wegner made his discovery by as-
suming that the desired solutions have a certain geometrical property, resulting in a
differential equation on their curvature that was solved in elliptic functions. Then he
proved that indeed, for a proper choice of parameters, these curves solved the problem.
It is shown in [11] that Wegner’s curves are solutions to a variational problem: they

are buckled rings (the relative extrema of the elastic – or bending – energy, subject to
the length and area constraints), and they are solitons: under the planar filament flow,
they evolve by isometries.
Our main goal in this paper is to obtain centroaffine analogs of these results.
In the spirit of discrete differential geometry, we also consider centroaffine poly-

gons, a discretization of centroaffine curves. These are centrally symmetric 2𝑛-gons
𝑃1, . . . , 𝑃2𝑛 such that [𝑃𝑖, 𝑃𝑖+1] = 1 and 𝑃𝑖+𝑛 = −𝑃𝑖 for all 𝑖 (the index is understood
cyclically). A centroaffine 2𝑛-gon is a self-Bäcklund (𝑛, 𝑘)-gon if there exists a constant
𝑐 such that [𝑃𝑖, 𝑃𝑖+𝑘] = 𝑐 for all 𝑖. A trivial example is an affine-regular 2𝑛-gon which is
a self-Bäcklund (𝑛, 𝑘)-gon for all 𝑘. The problem is to describe non-trivial self-Bäcklund
(𝑛, 𝑘)-gons.
These polygons are centroaffine analogs of the discretization of the bicycle curves,

the bicycle polygons, studied in [41, 45]. Some of our results on self-Bäcklund (𝑛, 𝑘)-
gons were included in Section 7.3 of the original (but not the final) version of [6], and
were motivated by the study of the cross-ratio dynamics on ideal polygons in the hy-
perbolic plane and hyperbolic space therein.
Centroaffinepolygons are closely related to linear second-order difference equations

with periodic solutions and with Coxeter’s frieze patterns, see [35]. In particular, given
a simple centroaffine 2𝑛-gon, the determinants [𝑃𝑖, 𝑃𝑗]with |𝑖−𝑗| < 𝑛 form the entries,
all positive, of a frieze pattern of width 𝑛 − 3. In these terms, we are interested in
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frieze patterns that have a row consisting of the same numbers, but not every row being
constant.
A word about the terminology that we use. We call a closed smooth curve star-

shaped if every ray emanating from the origin intersects the curve transversely and
only once. A curve is locally star-shaped if the above property holds locally, near every
point. Equivalently, [𝛾(𝑡), 𝛾′(𝑡)] ≠ 0 for all 𝑡. Star-shaped curves have winding number
1, but locally star-shaped curves can go around the origin several times.
The contents of this paper are as follows.
Section 2 concerns Bäcklund transformations of centroaffine curves. We describe

a centroaffine analog of the rear track curve (in the above mentioned bicycle setting).
We also interpret the Miura transformation in terms of centroaffine geometry.
Section 2.4 is devoted to the following problem: given a centroaffine curve 𝛾, for

which 𝑐 do 𝑐-related curves exist? We provide a complete answer to this question. This
result is a centroaffine analog of Menzin’s conjecture – now a theorem, originally for-
mulated for hatchet planimeters, but it also applies to the bicycle model, see [30] or
[23].
Section 3 comprises several results on self-Bäcklund curves. In Theorem 3 we prove

that a non-trivial infinitesimal deformation of a central conic as a self-Bäcklund curve
exists if and only if either 𝛼 = 𝜋/2 or 𝛼 satisfies the equation

tan(𝑘𝛼) = 𝑘 tan 𝛼

for some integer 𝑘 ≥ 4. A similar result is known for bicycle curves, see [41].
We show that if 𝛼 = 𝜋/3 or 𝛼 = 𝜋/4 then only the central conics are self-Bäcklund.

In contrast, if 𝛼 = 𝜋/2, one has a family of self-Bäcklund centroaffine curves with
functional parameters. Example 4.11 provides families of analytic curves with rotation
number 𝜋/2 and, at the same time, examples of analytic Radon curves.
Section 4 is the core part of the paper. We start by developing a centroaffine analog

of Wegner’s ansatz, that is, we guess what geometric properties self-Bäcklund curves
may possess. This leads to the assumption that these curves correspond to the traveling
wave solutions of the KdV equation, that is, their centroaffine curvature is an elliptic
function.
Thus we assume that the coordinates of our self-Bäcklund curves satisfy the Lamé

equation, the Hill equation whose potential is an elliptic function. In Section 4.2 we
construct these curves and describe the conditions on the parameters for which the
curves are self-Bäcklund. This work is analogous to the one done by F. Wegner. In
Section 4.3 we show that central conics indeed admit a deformation into self-Bäcklund
centroaffine curves for each 𝛼 appearing in Theorem 3.
Section 5 concerns self-Bäcklund centroaffine polygons. We start by showing that

the 𝑐-relations on centroaffine curves satisfy the Bianchi permutability property (The-
orem 9).
We describe a discrete version of Bäcklund transformation on centroaffine polygons

(this transformation is studied in detail in [2]). Theorem 10 presents some pairs (𝑛, 𝑘)
for which non-trivial self-Bäcklund polygons do not exist, and some pairs for which
they do. We also describe necessary and sufficient conditions for the existence of non-
trivial infinitesimal deformations of regular centroaffine 𝑛-gons in the class of self-
Bäcklund polygons. Similar results were known for bicycle polygons, see [41].
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In the appendix we connect centroaffine geometry with another geometry associ-
ated with the group SL2(ℝ), two-dimensional hyperbolic geometry. We assign to a cen-
troaffine curve a curve in the hyperbolic plane, its dual. The centroaffine curvature𝑝 of
a curve and the curvature 𝜅 of its dual in𝐻2 are related by the equation (1+𝑝)(1+𝜅) = 2.
We make extensive use of the formulas involving the Weierstrass elliptic function.

We refer to [39] for a compendium of such formulas. The arXiv preprint version of this
paper contains an appendix listing these formulas.
It was pointed out by a referee that it ismore common to use Jacobi elliptic functions

in KdV theory, whereas we use the Weierstrass elliptic functions. In this regard, we
quote from [1]:

The fact that the integral in Jacobi form or Riemann form contains
only one parameter, and not two like the Weierstrass integral, is very
convenient for various computations. The Weierstrass form is almost
always preferable for theoretical considerations.

2. Bäcklund transformations of centroaffine curves

2.1. The middle curve. Let 𝛾(𝑡) be a centroaffine curve satisfying 𝛾″(𝑡) = 𝑝(𝑡)𝛾(𝑡).
Construct a new centroaffine curve 𝛿(𝑡) = 𝑓(𝑡)𝛾(𝑡) + 𝑔(𝑡)𝛾′(𝑡), where 𝑓(𝑡) and 𝑔(𝑡) are
𝜋-periodic functions. Lemma 2.1 repeats Lemma 1.2 of [44].
Lemma 2.1. The curves 𝛾 and 𝛿 are 𝑐-related if and only if 𝑔(𝑡) = 𝑐 and
(3) 𝑐𝑓′(𝑡) − 𝑓2(𝑡) + 𝑐2𝑝(𝑡) + 1 = 0.
Proof. One has

𝑐 = [𝛾(𝑡), 𝛿(𝑡))] = 𝑔(𝑡)[𝛾(𝑡), 𝛾′(𝑡)] = 𝑔(𝑡),
and therefore 𝑔′(𝑡) = 0. Next,

𝛿′(𝑡) = (𝑓′(𝑡) + 𝑝(𝑡)𝑔(𝑡))𝛾(𝑡) + (𝑓(𝑡) + 𝑔′(𝑡))𝛾′(𝑡),
hence

1 = [𝛿(𝑡), 𝛿′(𝑡)] = 𝑓2(𝑡) − 𝑐(𝑓′(𝑡) + 𝑐𝑝(𝑡)).
This implies equation (3). □

Note that equation (3) is a Riccati equation on the unknown function 𝑓(𝑡).
Lemma 2.2. Let 𝛾 and 𝛿 be 𝑐-related and let Γ(𝑡) be themidpoint of the segment 𝛾(𝑡)𝛿(𝑡).
Then the velocity of Γ is aligned with this segment:

Γ′(𝑡) ∼ 𝛿(𝑡) − 𝛾(𝑡)
for all 𝑡. In addition, Γ is locally star-shaped, that is, [Γ(𝑡), Γ′(𝑡)] ≠ 0 for all 𝑡.
Proof. Since [𝛾, 𝛾′] = [𝛿, 𝛿′] = 1 and [𝛾, 𝛿] = 𝑐, one has

[𝛾′ + 𝛿′, 𝛿 − 𝛾] = [𝛾′, 𝛿] − [𝛿′, 𝛾] = [𝛾, 𝛿]′ = 0,
as needed.
For the second statement, if [Γ(𝑡), Γ′(𝑡)] = 0 then the line connecting 𝛾(𝑡) and 𝛿(𝑡)

passes through the origin, and then 𝑐 = 0. □
Remark 2.3. The locus of midpoints in Lemma 2.2 plays the role of the rear bicycle
track in the analogous problem mentioned in Section 1. This middle curve may have
cusps.
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We describe a method of constructing pairs of 𝑐-related curves. Start with a locally
star shaped curve Γ, with a centroaffine parameter 𝑠 and curvature𝑝(𝑠), so that [Γ, Γ𝑠] =
1, Γ𝑠𝑠 = 𝑝Γ. Let 𝛾± ≔ Γ ± (𝑐/2)Γ𝑠. The condition [𝛾−, 𝛾+] = 𝑐 is immediate; however,
in general, 𝑠 is not a centroaffine parameter for 𝛾±.
Proposition 2.4. If 𝑐2𝑝 ≠ 4 along Γ ( for example, if Γ is locally convex, that is, 𝑝 <
0), then 𝛾± can be simultaneously reparametrized by a centroaffine parameter 𝑡, so that
[𝛾±, (𝛾±)𝑡] = 1.
Proof. We calculate that [𝛾±, (𝛾±)𝑠] = 1 − (𝑐2/4)𝑝. If this does not vanish, then the
desired parameter 𝑡 is defined by

𝑑𝑡
𝑑𝑠 = 1 − 𝑐2𝑝(𝑠)

4 .

With this new parameter one has [𝛾±, (𝛾±)𝑡] = 1, as needed. □

Remark 2.5. Aswementioned, and as is seen from illustrations in this paper, themiddle
curve Γmay have cusps. The above construction of the curves 𝛾± from Γ extends to the
case when Γ has cusps and the curves 𝛾± remain smooth. Without going into details,
we illustrate this with an example.
Let Γ(𝑥) = (𝑥2, 𝑥3 + 1) be a cusp, and let 𝑠 be a centroaffine parameter. Then Γ𝑥 =

(2𝑥, 3𝑥2) and
𝑑𝑠
𝑑𝑥 = [Γ, Γ𝑥] = 𝑥4 − 2𝑥.

It follows that
𝛾± = Γ ± 𝑐

2Γ𝑠 = (∓ 𝑐2 , 1) + (0, ∓3𝑐4 ) 𝑥 + 𝑂(𝑥2),
which, for 𝑐 ≠ 0 and 𝑥 close to zero, are smooth curves.
Remark 2.6. Consider an oriented smooth closed strictly convex plane curve Γ. The
outer billiard transformation 𝑇 is a map of its exterior, defined as follows: given a point
𝑥, draw the oriented tangent line from 𝑥 to Γ, and reflect 𝑥 in the tangency point to
obtain the point 𝑇(𝑥). See [20] for a survey.
The relation of our topic to outer billiards is as follows: if 𝛾 is a self-Bäcklund curve

and the respective middle curve Γ is convex, then 𝛾 is an invariant curve of the outer
billiard map about Γ.
2.2. Curves 𝑐-related to centroaffine conics. In this section we consider the curves
that are 𝑐-related to centroaffine conics and identify self-Bäcklund curves among them.
These curves will have points at infinity.
Let 𝛾(𝑡) = (cos 𝑡, sin 𝑡), and let us construct a 𝑐-related curve as in Lemma 2.1: 𝛿(𝑡) =

𝑓(𝑡)𝛾(𝑡) + 𝑐𝛾′(𝑡). The respective Riccati equation for the function 𝑓 is
(4) 𝑐𝑓′(𝑡) = 𝑓2(𝑡) + 𝑐2 − 1.
Assume that 𝑐 > 1. This differential equation is easily solved:

(5) 𝑓(𝑡) = 𝑎 tan(𝑎𝑡𝑐 ) , where 𝑎 = √𝑐2 − 1

and a choice of the constant of integration has been made so that 𝑓(0) = 0 (any other
solution is obtained by a parameter shift).
The function 𝑓 has poles (the same is true for the solutions with 𝑐 < 1 and 𝑐 = 1),

and the respective centroaffine curve goes to infinity, having there an inflection point.
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For example, let 𝑐 = 5/3, 𝑎 = 4/3, see Figure 3. This curve is periodic with period
10𝜋.

- 3 - 2 - 1 1 2 3

- 3

- 2

- 1

1

2

3

Figure 3. The curve 𝛿(𝑡) = ( 43 tan(
4𝑡
5 ) cos 𝑡 −

5
3 sin 𝑡,

4
3 tan(

4𝑡
5 ) sin 𝑡 +

5
3 cos 𝑡)

Let us look for self-Bäcklund curves among the above curves 𝛿.

Lemma 2.7. Let 𝛿 be the centroaffine curve 𝑐-related to the unit circle 𝛾(𝑡) = (cos 𝑡, sin 𝑡),
where 𝑐 > 1. Then 𝛿 is self-Bäcklund with rotation number 𝛼, that is, [𝛿(𝑡), 𝛿(𝑡 + 𝛼)]
=const, if and only if 𝛼 satisfies

(6) tan(𝑢𝛼) = 𝑢 tan 𝛼, where 𝑢 = √𝑐2 − 1
𝑐 .

Furthermore, given such an 𝛼, one has [𝛿(𝑡), 𝛿(𝑡 + 𝛼)] = sin 𝛼.

Proof. The statement is invariant under parameter shift so it is enough to consider
𝛿 = 𝑓𝛾+𝑐𝛾′, where𝑓 is given by formula (5). Next, by a straightforward calculation, the
derivative of [𝛿(𝑡), 𝛿(𝑡+𝛼)]with respect to 𝑡 is some non-zero function times tan(𝑢𝛼)−
𝑢 tan 𝛼. It follows that [𝛿(𝑡), 𝛿(𝑡+𝛼)] is constant if and only if tan(𝑢𝛼) = 𝑢 tan 𝛼. Using
this equation for 𝛼, we calculate that [𝛿(𝑡), 𝛿(𝑡 + 𝛼)] = sin 𝛼. □

In general, for a fixed 𝑢 ∈ (0, 1), equation (6) has infinitely many solutions. See
Figure 4. If 𝑢 is rational then 𝛿 is periodic and there are finitely many solutions 𝛼
within a period.
A solution of equation (4) for 𝑐 < 1 is similar:

𝑓(𝑡) = −𝑎 tanh(𝑎𝑡𝑐 ) ,

where 𝑎2 = 1 − 𝑐2. The associated 𝑐-related curve 𝛿 = 𝑓𝛾 + 𝑐𝛾′ is non-periodic and
stays bounded; it is self-Bäcklund with a parameter shift 𝛼 satisfying

tanh(𝑢𝛼) = 𝑢 tan 𝛼, where 𝑢 = √1 − 𝑐2
𝑐 ,
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Figure 4. Solutions to equation (6), 𝑢 tan 𝛼 = tan(𝑢𝛼), 𝑢 ∈ (0, 1),
are given by the intersection points of the (red) graph of the𝜋-periodic
function 𝑦 = tan−1(𝑢 tan 𝛼) − 𝛼 + 𝜋𝑛, 𝜋𝑛 − 𝜋

2 ≤ 𝛼 ≤ 𝜋𝑛 + 𝜋
2 , 𝑛 ∈ ℤ,

and any of the (blue) lines 𝑦 = (𝑢 − 1)𝛼 + 𝑛𝜋, 𝑛 ∈ ℤ. If 𝑢 is rational
then 𝑓 = 𝑎 tan(𝑢𝑡) is periodic and 𝛿 is closed, self-Bäcklund with
rotation numbers 𝛼 given by the intersection points within a period
of 𝑓. In the figure above, 𝑢 = 2/7, 𝑓 is 7𝜋-periodic, 𝛿 is 14𝜋-periodic,
and there are 8 solutions 𝛼 ∈ (0, 14𝜋) with sin 𝛼 ≠ 0.

- 1 1

- 1

1

Figure 5. The curve 𝛿(𝑡) = (− 4
5 tanh(

4𝑡
3 ) cos 𝑡 −

3
5 sin 𝑡, −

4
5 tanh(

4𝑡
3 ) sin 𝑡 +

3
5 cos 𝑡)

and the constant determinant is sin 𝛼. This equation admits infinitely many solutions
±𝛼1, ±𝛼2, . . . , with 𝛼𝑛 ∈ (𝑛𝜋, 𝑛𝜋 + 𝜋/2). For 𝑡 → ±∞, the curve approaches the unit
circle, see Figure 5.
Another solution of (4) for 𝑐 < 1 is

𝑓(𝑡) = −𝑎 coth(𝑎𝑡𝑐 ) ,

with the respective value of 𝛼 given by

coth(𝑢𝛼) = 𝑢 tan 𝛼, where 𝑢 = √1 − 𝑐2
𝑐

and the constant determinant is sin 𝛼. There are infinitely many solutions here as well,
±𝛼0, ±𝛼1, . . . , with 𝛼𝑛 ∈ (𝑛𝜋, 𝑛𝜋 + 𝜋/2). This curve approaches the unit circle as 𝑡 →
±∞ and goes to infinity as 𝑡 → 0. See Figure 6.
If 𝑐 = 1, a solution of equation (4) is 𝑓(𝑡) = −1/𝑡. This curve is self-Bäcklund with

a parameter shift 𝛼 satisfying tan 𝛼 = 𝛼 and the constant determinant is sin 𝛼. There
are infinitely many solutions ±𝛼1, ±𝛼2, . . . , with 𝛼𝑛 ∈ (𝑛𝜋, 𝑛𝜋 + 𝜋/2). Its asymptotic
behavior is the same as in the previous example, see Figure 7.
For completeness, consider the case of a straight line 𝛾(𝑡) = (𝑡, −1). This cen-

troaffine curve is self-Bäcklund for an arbitrary parameter shift. A 𝑐-related curve
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- 4 - 2 2 4

Figure 6. The curve 𝛿(𝑡) = (− 4
5 coth(

4𝑡
3 ) cos 𝑡 −

3
5 sin 𝑡, −

4
5 coth(

4𝑡
3 ) sin 𝑡 +

3
5 cos 𝑡)

- 4 - 2 2 4

Figure 7. The curve 𝛿(𝑡) = (− 1
𝑡 cos 𝑡 − sin 𝑡, − 1

𝑡 sin 𝑡 + cos 𝑡)

𝑓𝛾 + 𝑐𝛾′ has 𝑓(𝑡) = − tanh(𝑡/𝑐), see Figure 8. This curve is not self-Bäcklund: the
respective equation on the parameter shifts 𝑏 is

tanh(𝑏𝑐 ) =
𝑏
𝑐 ,

and the only solution is 𝑏 = 0.

- 4 - 2 2 4

Figure 8. The curve 𝛿(𝑡) = (1 − 𝑡 tanh 𝑡, tanh 𝑡) (red), a Bäcklund
transform of the line 𝑦 = −1 (black)

2.3. 𝑐-Related curves andMiura transformation. The Miura transformation con-
nects the Korteweg-de Vries equation 𝑢̇ = 𝑢‴ + 6𝑢𝑢′ and the modified Korteweg-de
Vries equation ̇𝑣 = 𝑣‴ − 6𝑣2𝑣′: if 𝑣 satisfies mKdV then 𝑢 = −𝑣′ − 𝑣2 satisfies KdV.
More generally, if

(7) 𝑢 = −𝑣′ − 𝑣2 + 𝜆,
and 𝑣 satisfies
(8) ̇𝑣 = 𝑣‴ − 6𝑣2𝑣′ − 6𝜆𝑣′,
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then 𝑢 satisfies KdV. See [24].
Given 𝑢, equation (7) is a Riccati equation on 𝑣, just like equation (3) on the function

𝑓(𝑡) that describes the curves, 𝑐-related to a centroaffine curve with curvature 𝑝(𝑡).
This provides a geometrical interpretation of the Miura transformation in centroaffine
geometry.
The details are described by Theorem 1.

Theorem 1. Let 𝛾 be a centroaffine curve, and 𝛿 = 𝑓𝛾 + 𝑐𝛾′ be a 𝑐-related curve. Let
the curves 𝛾 and 𝛿 evolve by the KdV flow. Then they remain 𝑐-related, and the function
𝑓 evolves according to a version of mKdV:

̇𝑓 = −12𝑓
‴ + 3

𝑐2 (𝑓
2 − 1)𝑓′.

Proof. Let 𝑞 be the centroaffine curvature of 𝛿, that is, 𝛿″(𝑡) = 𝑞(𝑡)𝛿(𝑡). Then ̇𝛾 = 𝑉𝑝,
̇𝛿 = 𝑉𝑞, where we use the notation as in equation (1).
We start with the observation that 𝛾 = 𝑓𝛿− 𝑐𝛿′, and then we express the curvatures

𝑝 and 𝑞 from equation (3) as follows

(9) 𝑝 = 1
𝑐2 (𝑓

2 − 1 − 𝑐𝑓′), 𝑞 = 1
𝑐2 (𝑓

2 − 1 + 𝑐𝑓′)

(compare with Lemma 3.1 in [44]). It follows that

(10) 𝑞 − 𝑝 = 2
𝑐𝑓

′, 𝑝′ + 𝑞′ = 4
𝑐2𝑓𝑓

′.

That 𝛾 and 𝛿 remain 𝑐-related under theKdVflow follows from the fact the 𝑐-relation
commutes with the KdV flow, see [44]. Here is an independent verification.
We have: 𝛿′ = (𝑓′ + 𝑐𝑝)𝛾 + 𝑓𝛾′, and

[𝛾, 𝛿]⋅ = [𝑉𝑝, 𝛿] + [𝛾, 𝑉𝑞] =[−
1
2𝑝

′𝛾 + 𝑝𝛾′, 𝛿] + [𝛾, −12𝑞
′𝛿 + 𝑞𝛿′] =

− 1
2𝑐(𝑝

′ + 𝑞′) + 𝑓(𝑞 − 𝑓) = 0,

the last equality due to equation (10).
To calculate ̇𝑓, note that 𝑓 = [𝛿, 𝛾′]. Then
̇𝑓 = [ ̇𝛿, 𝛾′] + [𝛿, ̇𝛾′] = [𝑉𝑞, 𝛾′] + [𝛿, 𝑉 ′

𝑝 ] = [−12𝑞
′𝛿 + 𝑞𝛿′, 𝛾′] + [𝛿, (−12𝑝

′𝛾 + 𝑝𝛾′)′].
After substituting the values of𝑝 and 𝑞 and their derivatives in terms of𝑓 fromequation
(9) and collecting terms we obtain the stated equality. □

One can expand a periodic solution of equation (3) in a power series in 𝑐:

𝑓 = 1 + 𝑐2
2 𝑝 +

𝑐3
4 𝑝

′+𝑐
4

8 (𝑝
″ − 𝑝2) + 𝑐5

16(𝑝
‴ − 8𝑝𝑝′)

+ 𝑐6
32[𝑝

⁗ − 10𝑝𝑝″ − 9(𝑝′)2 + 2𝑝3] + . . . .
Given the relation of 𝑓 with the Miura transformation, one has the next statement; see
Section 1.1 of [24].
Corollary 2.8. The integrals of the odd terms of this series vanish, and the integrals of
the even terms are integrals of the KdV equation:

∫
𝜋

0
𝑝 𝑑𝑡, ∫

𝜋

0
𝑝2 𝑑𝑡, ∫

𝜋

0
(𝑝3 + 1

2(𝑝
′)2) 𝑑𝑡, . . . .
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See [11, Section 3.3] for a similar statement about the bicycle transformation and
the filament equation.

2.4. Range of the parameter 𝑐. The aim of this section is to describe, for a given
centroaffine closed 𝜋-anti-periodic curve 𝛾(𝑡), the range of the parameter 𝑐 for which 𝛾
admits closed centroaffine 𝑐-related curves. The main result is Theorem 2, describing
this range (a closed interval) in terms of the lowest eigenvalue of a Hill equation asso-
ciated with 𝛾. For a convex 𝛾 we obtain as a corollary an upper bound on 𝑐 in terms of
the area enclosed by its dual curve 𝛾∗. This result can be viewed as a centroaffine ana-
log of Menzin’s conjecture for hatchet planimeters (equivalently, bicycle monodromy),
discussed and proved in [30].
As we saw in Lemma 2.1, finding a centroaffine curve 𝑐-related to a given curve 𝛾

amounts to finding a solution 𝑓(𝑡) to the Riccati equation
(11) 𝑐𝑓′ − 𝑓2 + 𝑐2𝑝(𝑡) + 1 = 0,
where 𝑝 = [𝛾″, 𝛾′] (the centroaffine curvature of 𝛾). The corresponding 𝑐-related cen-
troaffine curve is 𝛿 = 𝑓𝛾 + 𝑐𝛾′. If 𝛾 is 𝜋-anti-periodic then 𝑝 in equation (11) is 𝜋-
periodic and we are looking for the values of the parameter 𝑐 for which the equation
admits a 𝜋-periodic solution, so that 𝛿 is 𝜋-anti-periodic as well. Note that for 𝑐 = 0
the equation admits the trivial solution 𝑓 ≡ 1.
Our study of the Riccati equation (11) is based on its relation with the Hill equation

(12) 𝑦″ + (𝜆 − 𝑝(𝑡))𝑦 = 0.
To state this relation we recall first that a solution 𝑦(𝑡) of (12) is called 𝜋-quasi-

periodic if 𝑦(𝑡+𝜋) = 𝜇 𝑦(𝑡) for all 𝑡 and some 𝜇 ∈ ℝ, 𝜇 ≠ 0, called the Floquetmultiplier
of 𝑦(𝑡). If 𝜇 = 1 then the solution is 𝜋-periodic and if 𝜇 = −1 it is 𝜋-anti-periodic.

Proposition 2.9. The Riccati equation (11) with a 𝜋-periodic 𝑝(𝑡) admits a 𝜋-periodic
solution 𝑓(𝑡) for a parameter value 𝑐 ≠ 0 if and only if the Hill equation (12) admits a
positive 𝜋-quasi-periodic solution 𝑦(𝑡) for 𝜆 = −1/𝑐2.

Proof. Indeed, if there exists such 𝑦(𝑡), then 𝑓 ≔ −𝑐𝑦′/𝑦 is a periodic solution of equa-
tion (11). In the opposite direction: if 𝑓 is a periodic solution of equation (11) and 𝐹 is
a primitive of 𝑓 then 𝑦 ≔ 𝑒−𝐹/𝑐 is the required solution of equation (12). □

We now borrow a well-known result from the general theory of the Hill equation,
due to Lyapunov and Haupt (ca. 1910, see Theorem 2.1 on page 11 of [31]).

Theorem (Spectrum of the Hill operator). Consider equation (12),
𝑦″ + (𝜆 − 𝑝(𝑡))𝑦 = 0,

where 𝑦(𝑡) is an unknown real function, 𝑝(𝑡) is a real 𝜋-periodic function and 𝜆 a real
parameter. Then there exist two unbounded sequences of real numbers

𝜆0 < 𝜆1 ≤ 𝜆2 < 𝜆3 ≤ 𝜆4 < . . . ,
𝜇0 ≤ 𝜇1 < 𝜇2 ≤ 𝜇3 < 𝜇4 ≤ . . . ,

satisfying

𝜆0 < 𝜇0 ≤ 𝜇1 < 𝜆1 ≤ 𝜆2 < 𝜇2 ≤ 𝜇3 < 𝜆3 ≤ 𝜆4 < . . . ,(13)
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such that equation (12) has a non-trivial 𝜋-periodic solution if and only if 𝜆 = 𝜆𝑘, and
a 𝜋-anti-periodic non-trivial solution if and only if 𝜆 = 𝜇𝑘, 𝑘 = 0, 1, . . . . The number
of zeros on [0, 𝜋) of a solution corresponding to 𝜆2𝑘−1 or 𝜆2𝑘 is 2𝑘. In particular, if a
𝜋-periodic solution has no zeros, then 𝜆 = 𝜆0. Similarly, the number of zeros on [0, 𝜋)
of a non-trivial solution corresponding to 𝜇2𝑘 or 𝜇2𝑘+1 is 2𝑘 + 1. Moreover, a solution to
equation (12) is unstable (that is, unbounded) if and only if𝜆 belongs to one of the intervals
(−∞, 𝜆0), (𝜇0, 𝜇1), (𝜆1, 𝜆2), . . . (called instability intervals, or ‘gaps’). See Figure 9.

0 1 2 31 2 3

stability interval instability interval (gap)

m0 m ml l l m l

Figure 9. The spectrum of Hill’s equation (12), stability and insta-
bility intervals

Concerning the lowest eigenvalue 𝜆0, we have the following.
Lemma 2.10. Let 𝜆0 be the first eigenvalue of the spectrum (13) of the Hill equation (12)
associated with a 𝜋-anti-periodic centroaffine curve 𝛾. Then

𝜆0 < 0, 𝜆0 ≤ −𝑃,
where

(14) 𝑃 ≔ − 1
𝜋 ∫

𝜋

0
𝑝(𝑡) 𝑑𝑡.

Proof. Each of the two coordinate components of 𝛾 is a non-trivial 𝜋-anti-periodic so-
lution of equation (12) for 𝜆 = 0. This implies that 𝜇𝑘 = 0 for some 𝑘 ≥ 1, hence
𝜆0 < 0.
The inequality 𝜆0 ≤ −𝑃 is due to Borg (see Theorem 3.3.1 of [22]). The following

argument is due to Ungar: Take a positive periodic solution 𝑦(𝑡) of equation (12) cor-
responding to 𝜆0. Then ℎ(𝑡) = 𝑦′(𝑡)/𝑦(𝑡) is a periodic solution of the Riccati equation
ℎ′ + ℎ2 + (𝜆0 − 𝑝(𝑡)) = 0. Integrating this equation over the period gives:

∫
𝜋

0
(𝜆0 − 𝑝(𝑡))𝑑𝑡 ≤ 0.

This yields the result. □

Remark 2.11. If 𝛾 is locally convex, so that 𝑝(𝑡) is strictly negative, then 𝑃 > 0 and we
have 𝜆0 ≤ −𝑃 < 0. The geometric meaning of 𝑃 is the area bounded by the dual curve
𝛾∗ (we refer to [28] and [42] for this and related facts).
Theorem 2. Let 𝛾 be a centroaffine 𝜋-anti-periodic curve and 𝜆0 < 0 the lowest 𝜋-
periodic eigenvalue of the associated Hill equation (12). Then 𝛾 admits a 𝑐-related closed
curve if and only if |𝑐| ≤ 1/√−𝜆0.
An immediate consequence of Theorem 2 and Lemma 2.10 is the following.

Corollary 2.12. Suppose 𝑃 > 0 ( for example 𝛾 is locally convex) and 𝛾 admits a 𝑐-related
𝜋-anti-periodic closed curve. Then |𝑐| ≤ 1/√𝑃.
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Proof of Theorem 2. By Proposition 2.9, we need to show that equation (12) admits a
𝜋-quasi-periodic positive solution if and only if 𝜆 ≤ 𝜆0.
Consider first the “if” part. If 𝜆 = 𝜆0 then equation (12) has a positive periodic

solution, hence quasi-periodic. So we shall assume now that 𝜆 < 𝜆0. In this case
equation (12) has no conjugate points, that is, a non-trivial solution vanishing at two
distinct points 𝑡1, 𝑡2 because, by the SturmComparison Theorem, any solution for every
larger 𝜆 must have a zero between 𝑡1, 𝑡2. However for 𝜆0 there is a positive periodic
solution. To complete the proof of the “if” part we make use of Lemma 2.13.

Lemma 2.13. The equation 𝑦″ + 𝑞(𝑡)𝑦 = 0, where 𝑞(𝑡 + 𝜋) = 𝑞(𝑡), has no conjugate
points if and only if it admits a positive 𝜋-quasi-periodic solution.

As far as we know, Lemma 2.13 is due to E. Hopf [29]. For completeness, we give
its proof below.
Now we prove Theorem 2 in the opposite direction. We need to show that equation

(12) admits no positive 𝜋-quasi-periodic solution for 𝜆 > 𝜆0. Assume 𝑦(𝑡) is such a
solution, 𝑦(𝑡 + 𝜋) = 𝜇 𝑦(𝑡), where 𝜇 > 0. There are two cases:

• If 𝜇 = 1 then 𝑦(𝑡) is a positive periodic solution. But this is possible only for
𝜆 = 𝜆0, a contradiction.

• If 𝜇 ≠ 1 then the solution 𝑦(𝑡) is unbounded, and hence 𝜆 belongs to one of the
instability zones. In particular, 𝜆 > 𝜇0. But then, by the Sturm Comparison
Theorem, 𝑦(𝑡) cannot be positive since solutions for 𝜇0 have zeroes.

This completes the proof of Theorem 2. □

Proof of Lemma 2.13 (after E. Hopf). If a Hill equation 𝑦″ + 𝑞(𝑡)𝑦 = 0 has no conju-
gate points then for every two distinct 𝑎, 𝑏 ∈ ℝ there exists a unique solution 𝑦(𝑡; 𝑎, 𝑏)
satisfying

𝑦(𝑎; 𝑎, 𝑏) = 1, 𝑦(𝑏; 𝑎, 𝑏) = 0.

By uniqueness, one has the relation for distinct 𝑎, 𝑎′:

(15) 𝑦(𝑡; 𝑎, 𝑏) = 𝑦(𝑎′; 𝑎, 𝑏)𝑦(𝑡; 𝑎′, 𝑏).

Using disconjugacy, one can show that a limiting solution exists and is positive every-
where:

𝑦(𝑡; 𝑎) ≔ lim
𝑏→+∞

𝑦(𝑡; 𝑎, 𝑏).

These positive solutions are 𝜋-quasi-periodic. Indeed, setting 𝑎′ ↦ 𝑎+𝜋, 𝑡 ↦ 𝑡 +𝜋
in equation (15)) and passing to the limit 𝑏 → +∞, we get

(16) 𝑦(𝑡 + 𝜋; 𝑎) = 𝑦(𝑎 + 𝜋; 𝑎)𝑦(𝑡 + 𝜋; 𝑎 + 𝜋) = 𝑦(𝑎 + 𝜋; 𝑎)𝑦(𝑡; 𝑎),

where the last equality is due to the 𝜋-periodicity of 𝑞(𝑡). Thus, 𝑦(𝑡; 𝑎) is 𝜋-quasi-
periodic with multiplier 𝜇 = 𝑦(𝑎 + 𝜋; 𝑎), as needed.
In the opposite direction the claim is obvious: if 𝑦″+𝑞(𝑡)𝑦 = 0 admits a positive solu-

tion then, by the SturmOscillation Theorem, any non-trivial solution has no conjugate
points. □
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3. Self-Bäcklund curves: First study

3.1. Infinitesimal deformations of centroaffine conics. In this section we study
infinitesimal deformations of centroaffine conics in the class of self-Bäcklund cen-
troaffine curves. (This includes, aswe recall fromSection 1, the requirement for𝜋-anti-
periodicity). We describe the values of the parameter 𝛼 for which centroaffine conics
admit non-trivial infinitesimal deformations. Later, in Section 4.3, we shall show that
these values of 𝛼 are realized by actual deformations, see Corollary 4.20.
Here is a brief reminder about deformations. Let 𝛾(𝑡) be a self-Bäcklund centroaffine

curve, satisfying
(17) [𝛾, 𝛾′] = 1, [𝛾(𝑡), 𝛾(𝑡 + 𝛼)] = 𝑐,
for some constants𝛼, 𝑐. A deformation of such a curve, within the class of self-Bäcklund
centroaffine curves, is a function ̃𝛾(𝑡, 𝜀) defined on ℝ × (−𝜀0, 𝜀0) for some 𝜀0 > 0, and
functions 𝛼̃(𝜀), ̃𝑐(𝜀)defined on (−𝜀0, 𝜀0), satisfying equation (17) for eachfixed 𝜀, namely

(18) [ ̃𝛾, 𝜕𝜕𝑡 ̃𝛾] = 1, [ ̃𝛾(𝑡, 𝜀), ̃𝛾(𝑡 + 𝛼̃(𝜀), 𝜀)] = ̃𝑐(𝜀),

and such that 𝛾 = ̃𝛾(⋅, 0), 𝛼 = 𝛼̃(0) and 𝑐 = ̃𝑐(0).
An infinitesimal deformation of 𝛾 is a formal expression ̃𝛾 = 𝛾(𝑡) + 𝜀𝛾1(𝑡), satisfying

equation (18) for each 𝜀, modulo 𝜀2, for some 𝛼̃ = 𝛼 + 𝜀𝛼1, ̃𝑐 = 𝑐 + 𝜀𝑐1. Clearly, if ̃𝛾 is
a deformation of 𝛾, then its first jet, 𝛾 + 𝜀 𝜕

𝜕𝜀
||𝜀=0 ̃𝛾, is an infinitesimal deformation of 𝛾.

However, the converse is not necessarily true, that is, given an infinitesimal deforma-
tion 𝛾 + 𝜀𝛾1, it is not clear a priori that there exists an ‘actual’ deformation ̃𝛾 of 𝛾 such
that 𝛾1 = 𝜕

𝜕𝜀
||𝜀=0 ̃𝛾.

An infinitesimal deformation is trivial if it is induced by a shift of the argument,
̃𝛾(𝑡, 𝜀) = 𝛾(𝑡 + 𝑎𝜀), or by the action of SL2(ℝ), ̃𝛾(𝑡, 𝜀) = 𝑒𝜀𝐴𝛾(𝑡), 𝐴 ∈ 𝔰𝔩2(ℝ).
Theorem 3. Let 𝛾(𝑡) = (cos 𝑡, sin 𝑡). Then

(1) A non-trivial infinitesimal deformation of 𝛾 within the class of self-Bäcklund 𝜋-
anti-periodic centroaffine curves exists if and only if 𝛼̃ = 𝛼 + 𝜀𝛼1 where 𝛼 = 𝜋/2,
or 𝛼 ≠ 𝜋/2 and 𝛼 satisfies the equation

(19) tan(𝑘𝛼) = 𝑘 tan 𝛼
for some integer 𝑘 ≥ 4.

(2) For 𝑘 ≥ 2, there are exactly 𝑘 − 2 solutions of equation (19) in the interval (0, 𝜋),
counting also 𝛼 = 𝜋/2 as a solution for 𝑘 odd.

Proof. (1) We make calculations mod 𝜀2. The first equation of (18) means that 𝛾1 is
a vector field along 𝛾, hence 𝛾1 = −(1/2)𝑓′𝛾 + 𝑓𝛾′ for a 𝜋-periodic function 𝑓(𝑡), see
equation (1). The second equation of (18) implies
(20) [𝛾1(𝑡), 𝛾(𝑡 + 𝛼)] + [𝛾(𝑡), 𝛾1(𝑡 + 𝛼)] + 𝛼1[𝛾(𝑡), 𝛾′(𝑡 + 𝛼)] = 𝑐1.
For 𝛾(𝑡) = (cos 𝑡, sin 𝑡) we have

[𝛾(𝑡), 𝛾(𝑡 + 𝛼)] = sin 𝛼, [𝛾′(𝑡), 𝛾(𝑡 + 𝛼)] = − cos 𝛼,
[𝛾(𝑡), 𝛾′(𝑡 + 𝛼)] = cos 𝛼,(21)

hence (20) becomes
[𝛾1(𝑡), 𝛾(𝑡 + 𝛼)] + [𝛾(𝑡), 𝛾1(𝑡 + 𝛼)] = 𝑐1 + 𝛼1 cos 𝛼 = const.
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It follows that

[−12𝑓
′(𝑡)𝛾(𝑡) + 𝑓(𝑡)𝛾′(𝑡), 𝛾(𝑡 + 𝛼)]

+ [𝛾(𝑡), −12𝑓
′(𝑡 + 𝛼)𝛾(𝑡 + 𝛼) + 𝑓(𝑡 + 𝛼)𝛾′(𝑡 + 𝛼)] = const.

In view of equation (21), this implies

(22) 1
2 [𝑓

′(𝑡) + 𝑓′(𝑡 + 𝛼)] sin 𝛼 − [𝑓(𝑡 + 𝛼) − 𝑓(𝑡)] cos 𝛼 = const.

Since the integral of the left hand side over the period is zero, the constant on the right
hand side is also zero.
Recall that 𝑓 is a 𝜋-periodic function and let

𝑓(𝑡) =
∞
∑

𝑘=−∞
𝑎𝑘𝑒2𝑖𝑘𝑡

be its Fourier expansion, with 𝑎−𝑘 = ̄𝑎𝑘. Then

𝑓′(𝑡) = 2𝑖
∞
∑

𝑘=−∞
𝑘𝑎𝑘𝑒2𝑖𝑘𝑡, 𝑓(𝑡 + 𝛼) =

∞
∑

𝑘=−∞
𝑎𝑘𝑒2𝑖𝑘𝛼𝑒2𝑖𝑘𝑡,

𝑓′(𝑡 + 𝛼) = 2𝑖
∞
∑

𝑘=−∞
𝑘𝑎𝑘𝑒2𝑖𝑘𝛼𝑒2𝑖𝑘𝑡.

Substitute this in equation (22) to conclude that
𝑎𝑘 [𝑖𝑘 (1 + 𝑒2𝑖𝑘𝛼) sin 𝛼 − (𝑒2𝑖𝑘𝛼 − 1) cos 𝛼] = 0

for each 𝑘. Hence 𝑎𝑘 = 0, unless
𝑖𝑘(1 + 𝑒2𝑖𝑘𝛼) sin 𝛼 = (𝑒2𝑖𝑘𝛼 − 1) cos 𝛼,

or
𝑘𝑒

𝑖𝑘𝛼 + 𝑒−𝑖𝑘𝛼
2 sin 𝛼 = 𝑒𝑖𝑘𝛼 − 𝑒−𝑖𝑘𝛼

2𝑖 cos 𝛼,
that is, 𝑘 tan 𝛼 = tan(𝑘𝛼).
Conversely, if equation (19) holds, then one can choose 𝑓(𝑡) to be a pure harmonic of
order 2𝑘, and then equation (18) holdsmodulo 𝜀2. Likewise, if 𝛼 = 𝜋/2, one can choose
𝑔(𝑡) to be a pure harmonic of order 2𝑘 with odd 𝑘 ≥ 3 or a linear combination of such
harmonics.
Note that equation (19) holds trivially for𝑘 = 0 and𝑘 = 1. The former case corresponds
to 𝑓(𝑡) being constant, a shift of the argument of 𝛾(𝑡). The latter case corresponds to
the action of 𝔰𝔩(2, ℝ), a stretching of the unit circle to an ellipse bounding area 𝜋.
For 𝑘 = 2 there are no solutions 𝛼 ∈ (0, 𝜋) to equation (19) and for 𝑘 = 3 the only
solution is 𝛼 = 𝜋/2 (see next item).
(2) See Proposition 2 of [27], or Lemma 4.8 of [11].

□

Remark 3.1. Equation (19) appeared in the context of bicycle kinematics in [11,41] and
in the papers by Wegner, summarized in [47]. It also appeared in [27] in the context
of billiards and flotation problems, and in [8], [9], [10] for magnetic, outer and wire
billiards. This ubiquitous equation has a countable number of solutions but, except for
𝜋/2, there are no 𝜋-rational solutions [18].
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3.2. Periods 3 and 4.

Theorem 4. Let 𝛾(𝑡) be a 𝜋-anti-periodic self-Bäcklund centroaffine curve, that is,
[𝛾(𝑡), 𝛾(𝑡 + 𝛼)] = 𝑐 ≠ 0. If 𝛼 = 𝜋/3 or 𝛼 = 𝜋/4 then 𝛾 is a centroaffine ellipse.
Proof. Consider the case of 𝛼 = 𝜋/3. Let us use the shorthand notation

𝛾(𝑡) = 𝛾0, 𝛾 (𝑡 + 𝜋
3 ) = 𝛾1, 𝛾 (𝑡 + 2𝜋

3 ) = 𝛾2.

Then
[𝛾0, 𝛾1] = [𝛾1, 𝛾2] = [𝛾2, −𝛾0] = 𝑐,

hence [𝛾0, 𝛾2] = [𝛾0, 𝛾1], and the vector 𝛾1 − 𝛾2 is collinear with 𝛾0. Likewise, 𝛾2 + 𝛾0 is
collinear with 𝛾1, and 𝛾1 − 𝛾0 with 𝛾2. We write

𝛾1 − 𝛾2 = 𝜑0𝛾0, 𝛾2 + 𝛾0 = 𝜑1𝛾1, 𝛾1 − 𝛾0 = 𝜑2𝛾2.
Since [𝛾0, 𝛾1] ≠ 0, the linear map ℝ3 → ℝ2, (𝑥0, 𝑥1, 𝑥2) ↦ ∑𝑥𝑖𝛾𝑖, has rank 2, hence

nullity 1. It follows that the matrix

[
−𝜑0 1 −1
1 −𝜑1 1
−1 1 −𝜑2

]

has rank 1, hence 𝜑0 = 𝜑1 = 𝜑2 = 1. Thus 𝛾2 = 𝛾1 − 𝛾0.
It follows that 𝛾′2 = 𝛾′1 − 𝛾′0, and hence

1 = [𝛾2, 𝛾′2] = [𝛾1 − 𝛾0, 𝛾′1 − 𝛾′0] = 2 − [𝛾0, 𝛾′1] + [𝛾′0, 𝛾1].
Since [𝛾0, 𝛾1] = 𝑐, one has [𝛾′0, 𝛾1] + [𝛾0, 𝛾′1] = 0. This implies that

[𝛾0, 𝛾′1] =
1
2 , [𝛾

′
0, 𝛾1] = −12 ,

and hence 𝛾1 = (1/2)𝛾0 + 𝑐𝛾′0.
It follows that in equation (3) one has 𝑓 = 1/2, and hence, by Lemma 2.1, 𝑐2𝑝 =

−3/4. That is, 𝑝 is constant, which implies 𝑝 = −1 and 𝑐 = √3/2, and therefore the
curve is a centroaffine conic.
The case 𝛼 = 𝜋/4 is similar. In analogous notations, one has

[𝛾0, 𝛾1] = [𝛾1, 𝛾2] = [𝛾2, 𝛾3] = [𝛾3, −𝛾0] = 𝑐,
hence

𝛾0 ∼ 𝛾1 − 𝛾3, 𝛾1 ∼ 𝛾0 + 𝛾2, 𝛾2 ∼ 𝛾1 + 𝛾3, 𝛾3 ∼ −𝛾0 + 𝛾2.
This implies
(23) 𝛾1 = 𝑔(𝛾0 + 𝛾2), 𝛾3 = 𝑔(𝛾2 − 𝛾0)
for some function 𝑔(𝑡).
Since [𝛾1, 𝛾′1] = [𝛾3, 𝛾′3] = 1, equation (23) implies

2𝑔2 = 1, [𝛾0, 𝛾′2] + [𝛾2, 𝛾′0] = 0.
But [𝛾0, 𝛾2] = 𝑐, hence [𝛾′0, 𝛾2] + [𝛾0, 𝛾′2] = 0, and therefore [𝛾′0, 𝛾2] = [𝛾0, 𝛾′2] = 0. In
particular, 𝛾2 ∼ 𝛾′0.
It follows that 𝛾1 = (1/√2)𝛾0 + 𝑐𝛾′0. Then, in equation (3), one has 𝑓 = 1/√2,

and hence, by Lemma 2.1, 𝑐2𝑝 = −1/2. Thus 𝑝 = −1, 𝑐 = 1/√2, and the curve is a
centroaffine conic. □
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Remark 3.2. An analogous result, rigidity for periods 3 and 4, holds for bicycle curves,
see [13, 14, 41].

3.3. Period two: Flexibility and Radon curves. In this section we show that self-
Bäcklund curves of period two, that is, 𝛼 = 𝜋/2, exhibit a substantial flexibility. A
similar result, for the value of the density 1/2, was known for a long time for Ulam’s
flotation in equilibrium problem [7, 50].
Let us construct a self-Bäcklund curve of period two as a closed trajectory of a vector

field𝑉 on the space of origin-centered parallelograms. Let the vertices be𝑃1, 𝑃2, −𝑃1, −𝑃2,
and let the vector field have the values 𝑉1, 𝑉2, −𝑉1, −𝑉2 at these vertices, respectively.
We want the trajectories of the points 𝑃1, 𝑃2, −𝑃1, −𝑃2 to coincide and to form a self-

Bäcklund curve with 𝛼 = 𝜋/2. Let (𝑃1(𝑡), 𝑃2(𝑡)) be an integral curve of such a vector
field. Then 𝑃2(𝑡) = 𝑃1(𝑡 + 𝜋/2). The centroaffine conditions [𝑃𝑖, 𝑃′𝑖 ] = 1 and the 𝑐-
relation [𝑃1, 𝑃2] = 𝑐 amount to
(24) [𝑃1, 𝑉1] = [𝑃2, 𝑉2] = 1, [𝑉1, 𝑃2] + [𝑃1, 𝑉2] = 0.
Note that the area of the parallelogram (𝑃1, 𝑃2, −𝑃1, −𝑃2) remains constant.

Lemma 3.3. Equation (24) is satisfied if and only if

𝑉1 = 𝑓𝑃1 +
1
𝑐𝑃2, 𝑉2 = −1𝑐𝑃1 − 𝑓𝑃2,

where 𝑓(𝑃1, 𝑃2) is an odd function, in the sense that 𝑓(𝑃2, −𝑃1) = −𝑓(𝑃1, 𝑃2).

Proof. Write 𝑉1 = 𝑓𝑃1 + 𝑔𝑃2, 𝑉2 = ̄𝑓𝑃1 + ̄𝑔𝑃2 and substitute into equation (24), using
[𝑃1, 𝑃2] = 𝑐, to obtain 𝑓 + ̄𝑔 = 0, 𝑔 = − ̄𝑓 = 1/𝑐. That 𝑓 is odd follows from the central
symmetry of the parallelogram. □

Thus one has a functional parameter 𝑓 to play with. The boundary conditions

(25) 𝑃1(0) = (1, 0), 𝑃1 (
𝜋
2 ) = 𝑃2(0) = (0, 𝑐), 𝑃2 (

𝜋
2 ) = −𝑃1(0) = (−1, 0)

impose a finite-dimensional restriction on the function 𝑓. As a result, we obtain a
functional space of self-Bäcklund curves of period two.
For example, if 𝑓 is identically zero and 𝑐 = 1, then 𝑃″1 = 𝑃′2 = −𝑃1, and the curve is

a centroaffine ellipse. See Figure 10 for a non-trivial example. In Example 4.11 (Figure
16) we construct explicitly many analytic curves.

Remark 3.4. The space of origin-centered parallelograms of a fixed area is identified
with SL2(ℝ). If 𝑃 = (𝑝1, 𝑝2), 𝑄 = (𝑞1, 𝑞2), then the first equation (24), [𝑃, 𝑈] = [𝑄, 𝑉],
means that the curve under consideration is tangent to the kernel of the 1-form𝑝1𝑑𝑝2−
𝑝2𝑑𝑝1+𝑞2𝑑𝑞1−𝑞1𝑑𝑞2. This form defines a contact structure on SL2(ℝ), and the curve
is Legendrian.

Let Γ be a smooth closed convex curve, symmetric with respect to the origin. Let
𝑥, 𝑦 ∈ Γ. One says that 𝑦 is Birkhoff orthogonal to 𝑥 if 𝑦 is parallel to the tangent line
to Γ at 𝑥. This relation is not necessarily symmetric; if it is symmetric, then Γ is called
a Radon curve. Radon curves comprise a functional space, with ellipses providing a
trivial example.
Radon curves have been thoroughly studied since their introduction more than 100

years ago; see [32] for a modern treatment.
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Figure 10. A self-Bäcklund curve with rotation angle 𝛼 = 𝜋/2
and 𝑐 = 1, using Lemma 3.3 and equation (25), where 𝑓(𝑃1, 𝑃2) =
𝑢(𝑃1)𝑢(𝑃2) and 𝑢(𝑥, 𝑦) = 1.2𝑥 − 4𝑥3 − 4𝑥5 (approximately)

Let Γ be a Radon curve, 𝑥 ∈ Γ be a point, and 𝑦 ∈ Γ be its Birkhoff orthogonal. Then
the tangent lines at points 𝑥, 𝑦, −𝑥,−𝑦 form a parallelogram circumscribed about Γ. As
𝑥 traverses Γ, the vertices of the parallelogram describe a curve 𝛾. The latter curve is
an invariant curve of the outer billiard transformation about Γ, see Remark 2.6.
The relation of self-Bäcklund curves with Radon curves is as follows. Let 𝛾 be a

self-Bäcklund curve with rotation number 𝜋/2, then the points 𝛾(𝑡), 𝛾(𝑡 + 𝜋/2), 𝛾(𝑡 +
𝜋), 𝛾(𝑡 + 3𝜋/2) form a parallelogram. Therefore the middle curve Γ is a Radon curve.
Example 4.11 provides analytic families of Radon curves.

4. Self-Bäcklund curves and the Lamé equation

4.1. Traveling wave solutions of KdV and Wegner’s ansatz. The first two in the
hierarchy of integrals of the Korteweg-de Vries equation are the functionals

(26) ∫𝑝(𝑡) 𝑑𝑡,∫𝑝2(𝑡) 𝑑𝑡

on centroaffine curves. In particular, KdV is the Hamiltonian flow of the former func-
tional with respect to the symplectic form ∫[𝑉 𝑓, 𝑉𝑔] 𝑑𝑡, where we use formula (1) for
tangent vector fields [38].
Consider a centroaffine curve that is a relative extremum of the second functional

(26) subject to the constraint given by the first one. Lemma 4.1 is well known and we
do not present its proof, see [21].

Lemma 4.1. These relative extrema are characterized by the differential equation on the
centroaffine curvature
(27) 𝑝‴ = 6𝑝𝑝′ + 𝑎𝑝′,
where 𝑎 is a Lagrange multiplier.

Equation (27) describes traveling wave solutions of KdV, see [21]. For the cen-
troaffine curves satisfying equation (27), the KdV evolution is described by the equa-
tion ̇𝑝 = 𝑎𝑝′, that is, by a parameter shift of the curvature 𝑝(𝑡). Two centroaffine
curves with the same curvature function differ by an element of SL2(ℝ). Therefore
these curves evolve in time by special linear transformations.
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Equation (27) can be integrated to

(28) (𝑝′)2 = 2𝑝3 + 𝑎𝑝2 + 2𝑏𝑝 + 𝑐,
where 𝑎, 𝑏, 𝑐 are constants.

Lemma 4.2. The curves described in Section 2.2 satisfy equation (27).

Proof. Let 𝑞(𝑡) be the centroaffine curvature of the curve 𝑓𝛾 + 𝑐𝛾′ where 𝛾 is a unit
circle and 𝑓 satisfies equation (4). Then

𝑞 = 2
𝑐2 (𝑓

2 − 1) − 1,

see Lemma 3.1 in [44] for this calculation. Hence

𝑞′ = 4𝑓𝑓′
𝑐2 = 4𝑓

𝑐2 (
𝑓2
𝑐 + 𝑐 − 1

𝑐 ) .

One needs to check that (𝑞′)2 = 2𝑞3+𝑎𝑞2+2𝑏𝑞+𝑐 for some constants 𝑎, 𝑏, 𝑐. One has

(𝑞′)2 = 16𝑓2
𝑐4 (𝑓

2

𝑐 + 𝑐 − 1
𝑐 )

2

a cubic polynomial in 𝑓2 with the leading coefficient 16/𝑐6. The same holds for 2𝑞3 +
𝑎𝑞2 + 2𝑏𝑞 + 𝑐, so one can choose the coefficients 𝑎, 𝑏, 𝑐 as needed. □

Now we develop a centroaffine analog of F. Wegner’s approach to 2-dimensional
bodies that float in equilibrium in all positions (or bicycle curves) [47–49].
Consider a centroaffine curve 𝛾(𝑡) = (𝑟(𝑡) cos 𝛼(𝑡), 𝑟(𝑡) sin 𝛼(𝑡)). The centroaffine

condition [𝛾, 𝛾′] = 1 is satisfied if 𝛼′ = 𝑟−2. We use prime to denote the derivative with
respect to 𝑡; the derivative with respect to 𝛼 is denoted as 𝑟𝛼.
Emulating Wegner’s approach and using material of Section 2.1, fix a small 𝜀 and

consider the curves Γ± = 𝛾 ± 𝜀𝛾′. These curves are 2𝜀-related. We want them to be ob-
tained from the same curve, Γ, by rotating it through small angles±𝛿. The assumption
is that 𝛿 is of order 𝜀3; all the calculations below are mod 𝜀4. We use the notations in
Figure 11.

Lemma 4.3. One has:

𝜑 = tan−1 ( 𝜀
𝑟2 + 𝜀𝑟𝑟′ ) , 𝜌 = √𝑟2 + 2𝜀𝑟𝑟′ + 𝜀2(𝑟−2 + 𝑟′2).

Proof. One has |𝛾′| = 𝑟−1√1 + 𝑟2𝑟′2, hence |𝐴𝐵+| = 𝜀𝑟−1√1 + 𝑟2𝑟′2. Next, 1 = [𝛾, 𝛾′] =
|𝛾||𝛾′| sin 𝜓, hence

sin 𝜓 = 1
√1 + 𝑟2𝑟′2

, cos 𝜓 = − 𝑟𝑟′

√1 + 𝑟2𝑟′2
.

Then
tan 𝜑 = |𝐴𝐵+| sin 𝜓

|𝑂𝐴| − |𝐴𝐵+| cos 𝜓
= 𝜀
𝑟2 + 𝜀𝑟𝑟′ .

Finally, by the cosine rule,

|𝑂𝐵+|2 = |𝑂𝐴|2 + |𝐴𝐵+|2 − 2|𝑂𝐴||𝐴𝐵+| cos 𝜓 = 𝑟2 + 2𝜀𝑟𝑟′ + 𝜀2(𝑟−2 + 𝑟′2),
as claimed. □
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Figure 11. Notation for Lemma 4.3: 𝑟 = |𝑂𝐴|, 𝜌 = |𝑂𝐵−| = |𝑂𝐵| =
|𝑂𝐵+|, 𝜑 = ∠𝐴𝑂𝐵+, 𝜓 = ∠𝑂𝐴𝐵+, 𝛿 = ∠𝐵𝑂𝐵+ = ∠𝐵−𝑂𝐵. 𝛾 and Γ
are given in polar coordinates by 𝑟(𝛼) and 𝜌(𝛽) (respectively).

Thus we have an equation for Γ in polar coordinates:
(29) 𝜌(𝛽) = 𝜌(𝛼 + 𝜑 − 𝛿) = √𝑟2 + 2𝜀𝑟𝑟′ + 𝜀2(𝑟−2 + 𝑟′2),
where 𝜑 is given in Lemma 4.3, and where 𝛿 = 𝑐𝜀3 with 𝑐 being a constant.
To solve equation (29), consider the cubic Taylor polynomials of both sides and

equate the even and odd parts separately (since the equation holds for ±𝜀). One has

𝜑 = 𝜀𝑟−2 − 𝜀2𝑟−3𝑟′ + 𝜀3 (𝑟−4𝑟′2 − 1
3𝑟

−6) ,

𝜑2 = 𝜀2𝑟−4 − 2𝜀3𝑟−5𝑟′, 𝜑3 = 𝜀3𝑟−6,

√𝑟2 + 2𝜀𝑟𝑟′ + 𝜀2(𝑟−2 + 𝑟′2) = 𝑟 + 𝜀𝑟′ + 𝜀2
2 𝑟

−3 − 𝜀3
2 𝑟

−4𝑟′.

To expand the left hand side of equation (29), we calculate 𝜌𝛼, 𝜌𝛼𝛼 and 𝜌𝛼𝛼𝛼, using
𝛼′ = 𝑟−2:

𝜌𝛼 = 𝑟2𝜌′, 𝜌𝛼𝛼 = 2𝑟3𝑟′𝜌′ + 𝑟4𝜌″, 𝜌𝛼𝛼𝛼 = 6𝑟4𝑟′2𝜌′ + 2𝑟5𝑟″𝜌′ + 6𝑟5𝑟′𝜌″ + 𝑟6𝜌‴.
Now we have for the left hand side of equation (29)

𝜌(𝛼 + 𝜑 − 𝛿) = 𝜌 + 𝜑𝜌𝛼 +
1
2𝜑

2𝜌𝛼𝛼 +
1
6𝜑

3𝜌𝛼𝛼𝛼 − 𝛿𝜌𝛼

= 𝜌 + 𝜀𝜌′ + 1
2𝜀

2𝜌″ + 1
6𝜀

3(𝑟−2𝜌‴ + 2𝑟−1𝑟″𝜌′ − 2𝑟−4𝜌′) − 𝑐𝜀3𝑟2𝜌′.

Thus

𝜌 + 1
2𝜀

2𝜌″ = 𝑟 + 1
2𝜀

2𝑟−3,

𝜌′ + 1
6𝜀

2(𝜌‴ + 2𝑟−1𝑟″𝜌′ − 2𝑟−4𝜌′ − 6𝑐𝑟2𝜌′) = 𝑟′ − 1
2𝜀

2𝑟−4𝑟′.

Differentiate the first equation and subtract from the second one, setting, following
Wegner, 𝜌 = 𝑟 (since 𝜀 is infinitesimal), to obtain

𝑟‴ − 𝑟−1𝑟′𝑟″ + 4𝑟−4𝑟′ + 3𝑐𝑟2𝑟′ = 0.



SELF-BÄCKLUND CURVES AND LAMÉ’S EQUATION 253

Multiply this by 𝑟−1 and write it as

(𝑟−1𝑟″ − 𝑟−4 − 3
2𝑐𝑟

2)
′
= 0,

or
𝑟″ − 𝑟−3 + 3

2𝑐𝑟
3 − 𝑏𝑟 = 0,

where 𝑏 is a constant. Multiply this by 2𝑟′ and write it as

(𝑟′2 + 𝑟−2 + 3
4𝑐𝑟

4 − 𝑏𝑟2)
′
= 0.

Hence
𝑟′2 = −𝑟−2 − 3

4𝑐𝑟
4 + 𝑏𝑟2 + 𝑎,

where 𝑎 is another constant. Multiply by 4𝑟2 to obtain
4𝑟2𝑟′2 = −4 − 3𝑐𝑟6 + 4𝑏𝑟4 + 𝑎𝑟2.

Finally, setting 𝑅 = 𝑟2 and renaming the constants, we obtain the differential equation
(30) 𝑅′2 = 𝑎𝑅3 + 𝑏𝑅2 + 𝑐𝑅 − 4.
Thus 𝑅(𝑡) is an elliptic function. The curve is given by a parametric equation
(31) Γ(𝑡) = (𝑅(𝑡)1/2 cos 𝛼(𝑡), 𝑅(𝑡)1/2 sin 𝛼(𝑡))
with 𝑅 as in equation (30) and 𝛼′ = 𝑅−1.

Remark 4.4. If the curve is a centroaffine ellipse, one has 𝑎 = 0 in equation (30).

Concerning the centroaffine curvature of this curve, it is also an elliptic function.

Lemma 4.5. One has
𝑝(𝑡) = 1

2𝑎𝑅(𝑡) +
1
4𝑏.

Proof. Differentiating equation (31) twice, we find that

𝑝 = −14𝑅
−2(𝑅′2 + 4) + 1

2𝑅
−1𝑅″.

Differentiating equation (30), we obtain

𝑅″ = 3
2𝑎𝑅

2 + 𝑏𝑅 + 1
2𝑐.

Substitute this and equation (30) in the above formula for 𝑝 to obtain the result. □

Renaming the constants again, we obtain from equation (30)

𝑝′2 = 2𝑝3 + 𝑎𝑝2 + 𝑏𝑝 + 𝑐,
which coincides with equation (28).
Let us also calculate the (Euclidean) curvature 𝑘 of a curve satisfying equation (30).

Lemma 4.6. One has
𝑘 = − 4𝑎𝑅 + 2𝑏

(𝑎𝑅2 + 𝑏𝑅 + 𝑐)
3
2
.
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Proof. Since 𝑡 is the centroaffine parameter, we have for the curvature

𝑘 = [𝛾′, 𝛾″]
|𝛾′|3 = −𝑝(𝑡)

|𝛾′|3 .

We have

|𝛾′| = √𝑟′2 + 𝑟2𝛼′2 =√
𝑅′2
4𝑅 + 1

𝑅 = √
𝑅′2 + 4
4𝑅 = √𝑎𝑅2 + 𝑏𝑅 + 𝑐

2 .

Hence
𝑘 = −8𝑝(𝑡)

√𝑎𝑅2 + 𝑏𝑅 + 𝑐
3 = − 4𝑎𝑅 + 2𝑏

(𝑎𝑅2 + 𝑏𝑅 + 𝑐)
3
2
.

□

Thus the curvature is a function of the distance from the origin. This is a special
class of curves, studied in [16, 40]. One can think of these curves as the trajectories
of a charge in a rotationally symmetric magnetic field whose strength is a function of
the distance from the origin. Note that Wegner’s curves also have this property: their
curvature satisfies 𝑘 = 𝑎𝑟2 + 𝑏, where 𝑎, 𝑏 are constants.
Likewise one can interpret equation 𝛾″ = 𝑝𝛾 as Newton’s Second Law, that is, 𝛾(𝑡)

is the trajectory of a point-mass in a central force field whose potential 𝑉 is rotationally
symmetric. By Lemma 4.5, and renaming the constants, one has 𝑉(𝑟) = 𝑎𝑟4 + 𝑏𝑟2 + 𝑐.
Using conservation of energy and momentum, one can solve the equation of motion
in quadratures.

Remark 4.7. Consider a particular case when𝑉 is a pure 4th power of the distance, that
is, the force is proportional to 𝑟3. According to a corollary of the Bohlin theorem, see
Theorem 5, Appendix 1 in [4], some trajectories in this field are the images of straight
lines under the conformal transformation𝑤 = 𝑧1/3. These are cubic curves, see Figure
12.

- 2 - 1 1 2

- 2

- 1

1

2

Figure 12. The curve 2(𝑥3−3𝑥𝑦2)−5(3𝑥2𝑦−𝑦3)+1 = 0, the image
of the line 2𝑎 − 5𝑏 + 1 = 0 under the conformal transformation 𝑤 =
𝑧1/3
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4.2. Self-Bäcklund curves as solutions of the Lamé equation. In this section we
give an explicit construction of a large family of self-Bäcklund curves, given by the
Wegner ansatz of Section 4.1. We shall make frequent use of standard facts about the
Weierstrass elliptic functions ℘, 𝜁, 𝜎, such as: the addition formulas [1, pages 40-41],
quasi-periodicity properties [1, pages 35-37], reality conditions [37, pages 29-32], de-
generate cases of Weierstrass functions [1, pages 201]. We shall also use applications
of elliptic functions to the Lamé equation which can be found in [37, pages 48-54].

4.2.1. Constructing the curves. Our starting point is equation (28),
(𝑝′)2 = 2𝑝3 + 𝑎𝑝2 + 2𝑏𝑝 + 𝑐,

for the curvature 𝑝(𝑡) of the self-Bäcklund curves suggested by the Wegner’s ansatz.
Comparing this equation to the equation satisfied by the Weierstrass℘ function,
(32) (℘′)2 = 4℘3 − 𝑔2℘− 𝑔3,
we conclude that 𝑝(𝑡) is given, in terms of℘, by
(33) 𝑝(𝑡) = 2℘(𝑡 + 𝜔′) + 𝐶.
Here ℘ is the Weierstrass function with half periods 𝜔,𝜔′, where the first one is real
and the second one is pure imaginary, see Figure 13. Since 𝑝(𝑡) needs to be periodic,
we are in the case of three real roots 𝑒1 > 𝑒2 > 𝑒3 of the right hand side of equation
(32). In formula (33) the shift of the argument by 𝜔′ is performed in order to get a real,
smooth, 2𝜔-periodic potential 𝑝(𝑡).

0

t

(a) (b)

(c)

2

- 2

t
- 2

e3

e2

℘(t + ω' )

e3 e2 e1

℘

℘'

2ωω

ω'

2ω'

Figure 13. The Weierstrass function ℘(𝑧) with real invariants and
fundamental half periods 𝜔 ∈ ℝ,𝜔′ ∈ 𝑖ℝ. (a) The fundamental rec-
tangle in the 𝑧 plane. The boundary of the rectangle (0, 𝜔′, 𝜔 + 𝜔′, 𝜔)
is mapped by ℘ onto the extended real axis ℝ ∪ {∞}. (b) The phase
plane of (℘′)2 = 4(℘−𝑒1)(℘−𝑒2)(℘−𝑒3). (c) The line {𝑡+𝜔′|𝑡 ∈ ℝ}
is mapped, 2𝜔-periodically, onto the segment [𝑒3, 𝑒2].
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The constant 𝐶 can be written as 𝐶 = ℘(𝑎) for some 𝑎 ∈ ℂ. Thus
(34) 𝑝(𝑡) = 2℘(𝑡 + 𝜔′) + ℘(𝑎).
We write our curve in complex form 𝑋(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡), satisfying
(35) 𝑋″ + (−℘(𝑎) − 2℘(𝑡 + 𝜔′))𝑋 = 0,
which is precisely the Lamé equation (equation (6) of [1, page 186]).
In order to construct a centroaffine 𝜋-anti-periodic curve, we shall require the fol-

lowing:
(1) The Wronskian [𝑋, 𝑋 ′] = 1. This can be achieved by rescaling of any solution

of equation (35) satisfying [𝑋, 𝑋 ′] = 𝑐𝑜𝑛𝑠𝑡 > 0 (see item (4) of Proposition 4.8).
(2) 𝜔 = 𝜋/2𝑘 for some integer 𝑘 ≥ 2, so that 𝑝 is 𝜋/𝑘-periodic.
(3) The solution 𝑋 is rotated over the period 2𝜔 by 𝜋𝑛/𝑘, where 0 < 𝑛 < 𝑘 is odd

and co-prime to 𝑘, so that after 𝑘 periods we have 𝑋(𝑡 + 𝜋) = −𝑋(𝑡). In other
words, we require 𝑋(𝑡) to be a complex 2𝜔-quasi-periodic solution of equation
(35), with Floquet multiplier 𝜇 = 𝑒𝑖𝜋𝑛/𝑘:

𝑋(𝑡 + 2𝜔) = 𝑋(𝑡)𝑒𝑖𝜋𝑛/𝑘.
A basis 𝑋+, 𝑋− for the solutions of the Lamé equation (35) can be written in the follow-
ing form (see [1, page 37]):

(36) 𝑋±(𝑡) = 𝑒−𝑡𝜁(±𝑎)𝜎(±𝑎 + 𝑡 + 𝜔′)𝜎(𝜔′)
𝜎(±𝑎 + 𝜔′)𝜎(𝑡 + 𝜔′) ,

where 𝜁, 𝜎 are the Weierstrass zeta and sigma functions, respectively.
The construction of the self-Bäcklund curves in this section boils down to a careful

choice of the parameter 𝑎 in equation (35).

Proposition 4.8. For every 𝑎 ∈ (0, 𝜔′) ∪ (𝜔, 𝜔 + 𝜔′),
(1) ℘(𝑎) is real, hence the potential 2℘(𝑡 + 𝜔′) +℘(𝑎) in the Lamé equation (35) is real
as well.

(2) 𝑋+(𝑡) is a regular curve, that is, 𝑋 ′
+(𝑡) ≠ 0 for all 𝑡.

(3) 𝑋+(0) = 1 and 𝑋 ′
+(0) = 𝑖𝑏 for some 𝑏 ∈ ℝ, 𝑏 > 0.

(4) 𝑋+(𝑡) is locally star-shaped and positively oriented:
[𝑋+(𝑡), 𝑋 ′

+(𝑡)] = 𝑐𝑜𝑛𝑠𝑡 > 0.
(5) 𝑋+(𝑡 + 2𝜔) = 𝑋+(𝑡)𝑒2𝑓(𝑎), where
(37) 𝑓(𝑎) ≔ 𝑎𝜁(𝜔) − 𝜔𝜁(𝑎).
That is,𝑋+(𝑡) is a 2𝜔-quasi-periodic solution of equation (35)with a Floquetmultiplier
𝜇 = 𝑒2𝑓(𝑎).

(6) The function 𝑓 of the previous item satisfies the identities

𝑓(−𝑎) = −𝑓(𝑎), 𝑓(𝑎 + 2𝜔) = 𝑓(𝑎), 𝑓(𝑎 + 2𝜔′) = 𝑓(𝑎) + 𝑖𝜋.

Proof. (1) See pages 31-32 of [37].
(2) Differentiating equation (36), and using 𝜁 = 𝜎′/𝜎 and the addition formula for 𝜁,
we compute:

𝑋 ′
+(𝑡) = 𝑋+(𝑡) [𝜁(𝑎 + 𝑡 + 𝜔′) − 𝜁(𝑎) − 𝜁(𝑡 + 𝜔′)] = 𝑋+(𝑡)

℘′(𝑎) − ℘′(𝑡 + 𝜔′)
2[℘(𝑎) − ℘(𝑡 + 𝜔′)] .
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Notice that the numerator in the last fraction cannot vanish, since ℘′(𝑡 + 𝜔′) is real
and ℘′(𝑎) is purely imaginary, both non-vanishing (℘′ vanishes in the fundamental
rectangle only at 0, 𝜔, 𝜔′, 𝜔 + 𝜔′). It follows that 𝑋 ′

+(𝑡) does not vanish.
(3) Substituting 𝑡 = 0 into equation (36) gives 𝑋+(0) = 1. From the previous item we
have

𝑋 ′
+(0) =

℘′(𝑎)
2(℘(𝑎) − 𝑒3)

.

For 𝑎 ∈ (0, 𝜔′) ∪ (𝜔, 𝜔 + 𝜔′) the numerator℘′(𝑎) is purely imaginary and the denom-
inator is real, both non-vanishing. Hence we can write 𝑋 ′

+(0) = 𝑖𝑏, 𝑏 ∈ ℝ, 𝑏 ≠ 0.
Moreover,℘(𝑎) < 𝑒3 and Im[℘′(𝑎)] < 0 for 𝑎 ∈ (0, 𝜔′). When 𝑎 ∈ (𝜔, 𝜔+𝜔′)we have
that℘(𝑎) > 𝑒3 is positive and Im[℘′(𝑎)] > 0. (All this is evident in Figure 13.) Hence,
in both cases, 𝑏 > 0.
(4) Since 𝑋+ is a solution of the Lamé equation (35), which has no 𝑋 ′ term, one has

Wronskian = [𝑋+(𝑡), 𝑋 ′
+(𝑡)] = 𝑐𝑜𝑛𝑠𝑡.

The constant must be positive, due to item (2).
(5) See [37, page 52].
(6) See [37, page 86].

□

Remark 4.9. Following Proposition 4.8 (item (4)) and the proof of item (3), we can
normalize the solutions of the Lamé equation (35) given by formula (36) by the constant
factor

𝑁 ≔ √|𝑋 ′
±(0)| = √

℘′(𝑎)
2𝑖(℘(𝑎) − 𝑒3)

,

so that the normalized solutions 𝑌±(𝑡) ≔ 1
𝑁𝑋±(𝑡) satisfy the centroaffine condition

[𝑌(𝑡), 𝑌 ′(𝑡)] = 1.
Next, due to requirement (3) and Proposition 4.8 (item (5)), we need to solve 2𝑓(𝑎) ≡

𝑖𝜋𝑛/𝑘 (mod 2𝜋𝑖), or

(38) 𝑓(𝑎) = 𝑖𝜋𝑛
2𝑘 + 𝑖𝜋𝑚,

for some integers𝑚, 𝑛 ∈ ℤ, where 𝑛 is odd, relatively prime to 𝑘, and 0 < 𝑛 < 𝑘.
To solve equation (38), it is enough to restrict 𝑎 to the fundamental rectangle. In-

deed, if 𝑎1 and 𝑎2 are two congruent solutions of equation (38), then the corresponding
potentials (34) of the Lamé equation are equal, and the curves constructed by formula
(36) are equivalent under the action of SL2(ℝ).
One may further restrict to solutions of equation (38) where 𝑎 belongs to one of the

segments (0, 𝜔′) or (𝜔, 𝜔 + 𝜔′), and𝑚 ≥ 0. This follows from the properties of 𝑓 listed
in Proposition 4.8 and the monotonicity property of 𝑓 on the segments [0, 2𝜔′] and
[𝜔, 𝜔+2𝜔′]. On the segment [0, 2𝜔′] the function 𝑓 varies monotonically from+𝑖∞ to
−𝑖∞. On the segment [𝜔, 𝜔 + 2𝜔′] it varies from 0 to 𝑖𝜋.
Theorem 5. Consider equation (38) for fixed integers 𝑘, 𝑛, where 𝑘 ≥ 2 and 𝑛 is odd,
relative prime to 𝑘, and 0 < 𝑛 < 𝑘. Then

(1) For each integer𝑚 ≥ 0 there is a unique solution 𝑎𝑚 ∈ (0, 𝜔′) ∪ (𝜔, 𝜔 + 𝜔′).
(2) For𝑚 > 0, 𝑎𝑚 ∈ (0, 𝜔′).
(3) For𝑚 = 0, 𝑎0 ∈ (𝜔, 𝜔 + 𝜔′).
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(4) The sequence 𝜆𝑚(𝜇) ≔ −℘(𝑎𝑚) is strictly monotone increasing and, in particu-
lar, the value 𝜆0(𝜇) = −℘(𝑎0) is the smallest one.

Proof. The proof of items (1)–(3) uses the behavior of the function 𝑓. Since 𝜋𝑛
2𝑘 < 𝜋

2 ,
for 𝑚 = 0 there is a unique solution 𝑎0 in the segment [𝜔, 𝜔 + 𝜔′], because 𝑓 is pure
imaginary on [𝜔, 𝜔 + 𝜔′] and varies monotonically from 0 at 𝜔 to 𝑖𝜋/2 at 𝜔 + 𝜔′.
For 𝑚 > 0, one can find a unique 𝑎𝑚 in the segment [0, 𝜔′] since there 𝑓 is pure

imaginary, varying monotonically from+𝑖∞ at 0 to 𝑖𝜋/2 at 𝜔′. Moreover, the sequence
𝑎𝑚 is monotone decreasing on [0, 𝜔′].
In order to prove (4), notice that on the segment [0, 𝜔′] the function℘ is real-valued

and monotone increasing from −∞ to 𝑒3. Hence −℘(𝑎𝑚) is monotone increasing for
𝑚 ≥ 1. Moreover, −℘(𝑎𝑚) > −𝑒3 for every𝑚 ≥ 1. As for𝑚 = 0,

−℘(𝑎0) ∈ (−𝑒1, −𝑒2),
because on the interval [𝜔, 𝜔 + 𝜔′] the function ℘ is monotonically decreasing and
takes the values 𝑒1, 𝑒2 at the end points, respectively. Since 𝑒3 < 𝑒2 < 𝑒1, this proves
item (4) (see Figure 13). □

Moreover we have the following result.

Theorem 6. For each 𝑘,𝑚, 𝑛 as in Theorem 5, consider the curve 𝑋+ determined by the
value 𝑎𝑚.

(1) 𝑋+ is locally star-shaped 𝜋-anti-periodic curve, with the winding number

w = 2𝑘 ⌈𝑚2 ⌉ + 𝑛.

(2) 𝑋+ is embedded (simple) if and only if𝑚 = 0, 𝑛 = 1.

Proof. It follows from Theorem 5 that the sequence 𝜆𝑚(𝜇) ≔ −℘(𝑎𝑚) is the sequence
of Floquet eigenvalues for the problem

𝑋″ + (𝜆 − 2℘(𝑡 + 𝜔′))𝑋 = 0, 𝑋(𝑡 + 2𝜔) = 𝜇𝑋(𝑡), 𝜇 ∶= 𝑒𝑖𝜋𝑛/𝑘,
and that 𝜆𝑚(𝜇) is monotone increasing.
It follows from Proposition 4.8 that the curve is locally star-shaped and positively

oriented.
In order to compute the winding number of the curve, we need first to see what

happens over one period [0, 2𝜔]. Denote by 𝑦𝑚(𝑡) the imaginary part of the solution
𝑋+ corresponding to 𝑎𝑚. We know by Proposition 4.8 (claim (2)) that at the end points
of the period one has

𝑦𝑚(0) = 0, 𝑦′𝑚(0) > 0, 𝑦𝑚(2𝜔) = sin(𝜋𝑛𝑘 ) > 0.

This implies that the number of zeroes of 𝑦𝑚 on (0, 2𝜔] is even for every𝑚.
In order to find the number of zeroes of 𝑦𝑚 on the interval (0, 2𝜔)we use Sturm the-

ory, comparing 𝑦𝑚 with the Dirichlet eigenfunctions of the Lamé equation, as follows.
Let us denote byΛ𝑚,Ψ𝑚, 𝑚 ≥ 0, the eigenvalues and eigenfunctions corresponding

to Dirichlet boundary conditions of the equation
(39) Ψ″ + (𝜆 − 2℘(𝑡 + 𝜔′))Ψ = 0.
Thus the eigenfunctions Ψ𝑚 vanish at the end points of the interval [0, 2𝜔] and have
exactly𝑚 zeros in (0, 2𝜔).
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We claim that the number of zeroes of 𝑦𝑚 in (0, 2𝜔) is given by the formula:

(40) #{𝑡 ∈ (0, 2𝜔) ∶ 𝑦𝑚(𝑡) = 0} = 2 ⌈𝑚2 ⌉ .

To prove this, we shall consider two cases (see Figure 14):
(1) If 𝑚 = 2𝑙 then Λ2𝑙−1 < 𝜆2𝑙(𝜇) < Λ2𝑙. In this case, the zeroes of Ψ2𝑙−1 divide the
interval into 2𝑙 subsegments. In each of them, 𝑦2𝑙 must vanish somewhere (by Sturm
theory). Hence there are at least 2𝑙 zeroes. In fact, this number must be exactly 2𝑙,
because otherwise it would be at least 2𝑙 + 2 zeros (𝑦𝑚 has an even number of zeroes).
But then Ψ2𝑙 would have more than 2𝑙 zeroes.

Figure 14. Graph of the function Δ(𝜆) ≔ 𝑦1(𝜆, 2𝜔) + 𝑦′2(𝜆, 2𝜔),
where 𝑦1(𝜆, 𝑡), 𝑦2(𝜆, 𝑡) are the basic solutions of equation (39) with
𝑦1(𝜆, 0) = 𝑦′2(𝜆, 0) = 1, 𝑦′1(𝜆, 0) = 𝑦2(𝜆, 0) = 0; the positions of the
periodic (𝜆𝑛), anti-periodic (𝜇𝑛), Dirichlet (Λ𝑛), and Floquet (𝜆𝑛(𝜇))
eigenvalues are indicated

(2) If 𝑚 = 2𝑙 + 1 then Λ2𝑙 < 𝜆2𝑙+1(𝜇) < Λ2𝑙+1. The zeroes of Ψ2𝑙 divide the interval
into 2𝑙 + 1 subintervals, in each of which 𝑦2𝑙+1 must vanish somewhere (by Sturm
theory), implying that 𝑦2𝑙+1 has at least 2𝑙 + 1 zeroes. But then this number is at least
2𝑙+2, because it is even. Hence, the number of zeroes of 𝑦2𝑙+1 is exactly 2𝑙+2, because
otherwise Ψ2𝑙+1 would have more than 2𝑙 + 1 zeroes. This completes the proof of the
claim.
As a consequence of formula (40), we see that for 𝑎 = 𝑎𝑚 the solution 𝑋+ makes ⌈𝑚2 ⌉
full turns over the period [0, 2𝜔], plus an angle of 𝜋𝑛

𝑘 , which is a
𝑛
2𝑘 fraction of a full

turn. Altogether, after 2𝑘 periods, the number of turns is

w = 2𝑘 (⌈𝑚2 ⌉ +
𝑛
2𝑘) = 2𝑘 ⌈𝑚2 ⌉ + 𝑛.

This proves the first claim of Theorem 6.
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The last formula implies that the curve is simple, that is, w = 1, if and only if 𝑚 =
0, 𝑛 = 1, proving the second claim. This completes the proof.

□

4.2.2. Establishing the self-Bäcklund property.

Proposition 4.10. The curve 𝑋+ of equation (36) satisfies the self-Bäcklund property
[𝑋+(𝑡), 𝑋+(𝑡 + 𝛼)] = 𝑐𝑜𝑛𝑠𝑡 for a value of the parameter 𝛼 ∈ (0, 𝜋) if and only if
(41) 𝜎(𝑎 + 𝛼) = 𝑒2𝛼𝜁(𝑎)𝜎(𝑎 − 𝛼).

Proof. Set 𝛽 = 𝛼/2. Then equation (2) can be rewritten as

Im (𝑋+(𝑡 + 𝛽)𝑋+(𝑡 − 𝛽)) = 𝑐,
where overline denotes the complex conjugation. We can rewrite this equation as

𝑋+(𝑡 + 𝛽)𝑋−(𝑡 − 𝛽) − 𝑋−(𝑡 + 𝛽)𝑋+(𝑡 − 𝛽) = 2𝑐.
Next we substitute in the last equation the expressions for 𝑋± from equation (36):

2𝑐 =𝑒−(𝑡+𝛽)𝜁(𝑎)𝜎(𝑎 + 𝑡 + 𝛽 + 𝜔′)𝜎(𝜔′)
𝜎(𝑎 + 𝜔′)𝜎(𝑡 + 𝛽 + 𝜔′) 𝑒

(𝑡−𝛽)𝜁(𝑎)𝜎(−𝑎 + 𝑡 − 𝛽 + 𝜔′)𝜎(𝜔′)
𝜎(−𝑎 + 𝜔′)𝜎(𝑡 − 𝛽 + 𝜔′)

− 𝑒(𝑡+𝛽)𝜁(𝑎)𝜎(−𝑎 + 𝑡 + 𝛽 + 𝜔′)𝜎(𝜔′)
𝜎(−𝑎 + 𝜔′)𝜎(𝑡 + 𝛽 + 𝜔′) 𝑒

−(𝑡−𝛽)𝜁(𝑎)𝜎(𝑎 + 𝑡 − 𝛽 + 𝜔′)𝜎(𝜔′)
𝜎(𝑎 + 𝜔′)𝜎(𝑡 − 𝛽 + 𝜔′) .

This can be simplified, using the identity

(42) ℘(𝑧) − ℘(𝑤) = −𝜎(𝑧 − 𝑤)𝜎(𝑧 + 𝑤)
𝜎2(𝑧)𝜎2(𝑤)

(see [37, page 25]). We get

2𝑐 =𝑒−2𝛽𝜁(𝑎) [℘(𝑡 + 𝜔′) − ℘(𝑎 + 𝛽)] 𝜎2(𝑎 + 𝛽)𝜎2(𝜔′)
[℘(𝑡 + 𝜔′) − ℘(𝛽)] 𝜎2(𝛽)𝜎(𝑎 + 𝜔′)𝜎(−𝑎 + 𝜔′)

− 𝑒2𝛽𝜁(𝑎) (℘(𝑡 + 𝜔′) − ℘(𝑎 − 𝛽))𝜎2(𝑎 − 𝛽)𝜎2(𝜔′)
[℘(𝑡 + 𝜔′) − ℘(𝛽)] 𝜎2(𝛽)𝜎(𝑎 + 𝜔′)𝜎(−𝑎 + 𝜔′) .

Multiplying by the common denominator and renaming the constant,
̃𝑐 ≔ 2𝑐𝜎2(𝛽)𝜎(𝑎 + 𝜔′)𝜎(−𝑎 + 𝜔′)/𝜎2(𝜔′),

we get
̃𝑐 [℘(𝑡 + 𝜔′) − ℘(𝛽)] =𝑒−2𝛽𝜁(𝑎) [℘(𝑡 + 𝜔′) − ℘(𝑎 + 𝛽)] 𝜎2(𝑎 + 𝛽)

− 𝑒2𝛽𝜁(𝑎) [℘(𝑡 + 𝜔′) − ℘(𝑎 − 𝛽)] 𝜎2(𝑎 − 𝛽).
Thus we must have

̃𝑐 = 𝑒−2𝛽𝜁(𝑎)𝜎2(𝑎 + 𝛽) − 𝑒2𝛽𝜁(𝑎)𝜎2(𝑎 − 𝛽),
℘(𝛽) ̃𝑐 = 𝑒−2𝛽𝜁(𝑎)℘(𝑎 + 𝛽)𝜎2(𝑎 + 𝛽) − 𝑒2𝛽𝜁(𝑎)℘(𝑎 − 𝛽)𝜎2(𝑎 − 𝛽).

Substituting ̃𝑐 from the first identity into the second and simplifying, we get
𝜎2(𝑎 + 𝛽) [℘(𝑎 + 𝛽) − ℘(𝛽)] = 𝑒4𝛽𝜁(𝑎)𝜎2(𝑎 − 𝛽) [℘(𝑎 − 𝛽) − ℘(𝛽)] .

Now, using equation (42) again, we obtain 𝜎(𝑎 + 𝛼) = 𝑒2𝛼𝜁(𝑎)𝜎(𝑎 − 𝛼), as needed. □

Theorem 7 states the self-Bäcklund property of the curves 𝑋+.
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Theorem 7. For each 𝑘,𝑚, 𝑛 as in Theorem 5, the associated curve 𝑋+ satisfies the self-
Bäcklund property [𝑋+(𝑡), 𝑋+(𝑡 + 𝛼)] = 𝑐𝑜𝑛𝑠𝑡 for 𝑘 − 2 values of 𝛼 ∈ (0, 𝜋).

Example 4.11. Let us look for solutions of equation (41) of the form 𝛼 = 𝑙𝜔, where 𝑙 is
an integer. Using the quasi-periodicity property of 𝜎 (see [1, page 37], [37, page 20]),
we write

𝜎(𝑎 + 𝛼) = 𝜎(𝑎 + 𝑙𝜔) = 𝜎(𝑎 − 𝛼 + 2𝑙𝜔) = (−1)𝑙𝑒2𝑙𝜁(𝜔)(𝑎−𝛼+𝑙𝜔)𝜎(𝑎 − 𝛼)
= (−1)𝑙𝑒2𝑙𝑎𝜁(𝜔)𝜎(𝑎 − 𝛼).

Comparing with equation (41), we require (−1)𝑙𝑒2𝑙𝑎𝜁(𝜔) = 𝑒2𝛼𝜁(𝑎). We choose 𝑙 to be
odd and require

2𝛼𝜁(𝑎) = 2𝑙𝜔𝜁(𝑎) = 2𝑙𝑎𝜁(𝜔) − 𝑖𝜋.
Hence 𝑓(𝑎) = 𝑎𝜁(𝜔)−𝜔𝜁(𝑎) = 𝑖𝜋/2𝑙. But, according to equation (38), 𝑓(𝑎) = 𝑖𝜋𝑛/2𝑘+
𝑖𝜋𝑚. Therefore, choosing 𝑚 = 0, 𝑛 = 1 implies 𝑙 = 𝑘, and so 𝛼 = 𝑙𝜔 = 𝑘𝜋/2𝑘 = 𝜋/2.
In this way, we construct an infinite family of self-Bäcklund simple closed curves with
rotation number 𝛼 = 𝜋/2, as discussed in Section 3.3, but now we have an analytical
example. See Figure 15.

k = 3 k = 5 k = 7

Figure 15. Example 4.11. Self-Bäcklund centroaffine simple curves
𝑋+(𝑡) of Wegner type (blue) with 2𝑘-fold symmetry, 𝑘 = 3, 5, 7, with
rotation number 𝛼 = 𝜋/2 (one quarter of a turn). The red curve is
traced by the midpoint of the line segment 𝑋+(𝑡)𝑋+(𝑡 + 𝜋/2) (black)
and is tangent to it. For large enough𝜔′, themidpoint curve is smooth
and convex (top); as 𝜔′ becomes smaller, cusps appear (bottom).

4.2.3. Proof of the self-Bäcklund property (Theorem 7). We shall distinguish between
two cases. In both cases we shall rewrite equation (41) in a more tractable form.
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Case 1. Let us start with themost important case𝑚 = 0 (the curve is simple if and only
if 𝑛 = 1). For𝑚 = 0 we have from equation (38) that 𝑓(𝑎) = 𝑖𝜋𝑛

2𝑘 , where
𝑎 = 𝜔 + 𝑖𝑏 ∈ [𝜔, 𝜔 + 𝜔′], 𝑏 ∈ ℝ.

We have from equation (41) that

(43) −𝜎(𝛼 + 𝜔 + 𝑖𝑏)
𝜎(𝛼 − 𝜔 − 𝑖𝑏) = 𝑒2𝛼𝜁(𝜔+𝑖𝑏).

Using the quasi-periodicity of 𝜎, one has
−𝜎(𝛼 + 𝜔 + 𝑖𝑏) = 𝜎(𝛼 − 𝜔 + 𝑖𝑏)𝑒2𝜁(𝜔)(𝛼+𝑖𝑏).

Substituting into equation (43), we get
𝜎(𝛼 − 𝜔 + 𝑖𝑏)
𝜎(𝛼 − 𝜔 − 𝑖𝑏) = 𝑒2𝛼𝜁(𝜔+𝑖𝑏)−2𝜁(𝜔)(𝛼+𝑖𝑏) = 𝑒2𝛼[𝜁(𝜔+𝑖𝑏)−𝜁(𝜔)]−2𝑖𝜁(𝜔)𝑏,

or, equivalently,
− 𝜎(𝛼 − 𝜔 + 𝑖𝑏)
𝜎(−𝛼 + 𝜔 + 𝑖𝑏) = 𝑒2𝛼[𝜁(𝜔+𝑖𝑏)−𝜁(𝜔)]−2𝑖𝜁(𝜔)𝑏.

Taking log, we obtain

𝑖2𝜋𝑙 +∫
𝛼−𝜔

−𝛼+𝜔
𝜁(𝑖𝑏 + 𝑡)𝑑𝑡 = 𝑖𝜋 + 2𝛼[𝜁(𝜔 + 𝑖𝑏) − 𝜁(𝜔)] − 2𝑖𝜁(𝜔)𝑏.

Hence

(44) 𝜋𝑙 + Im(∫
𝛼−𝜔

0
𝜁(𝑖𝑏 + 𝑡)𝑑𝑡) = 𝜋

2 +
𝛼
𝑖 [𝜁(𝜔 + 𝑖𝑏) − 𝜁(𝜔)] − 𝜁(𝜔)𝑏.

Let us denote
𝑔(𝛼) ≔ Im(∫

𝛼−𝜔

0
𝜁(𝑖𝑏 + 𝑡)𝑑𝑡) .

Lemma 4.12. For any 𝑟 ∈ ℕ ∪ {0}, we have

Im(∫
2𝜔𝑟−𝜔

0
𝜁(𝑖𝑏 + 𝑡)𝑑𝑡) = (2𝑟 − 1)𝑏𝜁(𝜔) − 𝜋𝑟 + 𝜋

2 .

Proof. Apply the Cauchy residue formula to the rectangular path
−𝜔(2𝑟−1)+ 𝑖𝑏 → 𝜔(2𝑟−1)+ 𝑖𝑏 → 𝜔(2𝑟−1)− 𝑖𝑏 → −𝜔(2𝑟−1)− 𝑖𝑏 → −𝜔(2𝑟−1)+ 𝑖𝑏
to obtain the result. □

Using the quasi-periodicity of 𝜁 and Lemma 4.12, we have

𝑔(𝛼 + 2𝜔) = Im(∫
2𝜔𝑟+𝜔

0
𝜁(𝑖𝑏 + 𝑡)𝑑𝑡)

= Im(∫
2𝜔𝑟−𝜔

0
𝜁(𝑖𝑏 + 𝑡)𝑑𝑡) + Im(∫

𝜔

−𝜔
𝜁(𝑖𝑏 + 𝑡)𝑑𝑡)

= Im(∫
2𝜔𝑟−𝜔

0
𝜁(𝑖𝑏 + 𝑡)𝑑𝑡) + 2Im(∫

𝜔

0
𝜁(𝑖𝑏 + 𝑡)𝑑𝑡)

= Im(∫
2𝜔𝑟−𝜔

0
𝜁(𝑖𝑏 + 𝑡)𝑑𝑡) + 2𝑏𝜁(𝜔) − 𝜋 = 𝑔(𝛼) + 2𝑏𝜁(𝜔) − 𝜋.
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Therefore we can write 𝑔 in the form

(45) 𝑔(𝛼) = (2𝑏𝜁(𝜔) − 𝜋
2𝜔 )𝛼 + ℎ(𝛼),

where ℎ is a 2𝜔-periodic function. Moreover, by Lemma 4.12 (with 𝑟 = 0),

ℎ(0) = 𝑔(0) = −𝑏𝜁(𝜔) + 𝜋
2 .

It is convenient to use ℎ0 instead of ℎ:

ℎ0(𝛼) ≔ ℎ(𝛼) − ℎ(0) = ℎ(𝛼) + 𝑏𝜁(𝜔) − 𝜋
2 ,

so that ℎ0 is 2𝜔-periodic with ℎ0(0) = 0. Thus

(46) 𝑔(𝛼) = (2𝑏𝜁(𝜔) − 𝜋
2𝜔 )𝛼 + ℎ0(𝛼) − 𝑏𝜁(𝜔) + 𝜋

2 .

Substituting equation (46) into equation (44), we obtain the equation:

𝜋𝑙 + (2𝑏𝜁(𝜔) − 𝜋
2𝜔 )𝛼 + ℎ0(𝛼) − 𝑏𝜁(𝜔) + 𝜋

2
= 𝜋
2 +

𝛼
𝑖 [𝜁(𝜔 + 𝑖𝑏) − 𝜁(𝜔)] − 𝜁(𝜔)𝑏.

This is the same as

𝜋𝑙 + ℎ0(𝛼) = 𝛼 (−2𝑏𝜁(𝜔) + 𝜋
2𝜔 + (𝜁(𝜔 + 𝑖𝑏) − 𝜁(𝜔))

𝑖 )

= 𝛼 ( 𝜋2𝜔 + 2𝜔𝜁(𝜔 + 𝑖𝑏) − 2𝜔𝜁(𝜔) − 2𝑖𝑏𝜁(𝜔)
2𝑖𝜔 )

= 𝛼 ( 𝜋2𝜔 − 2𝑓(𝜔 + 𝑖𝑏)
2𝑖𝜔 ) = 𝛼 ( 𝜋2𝜔 − 2𝑓(𝑎)

2𝑖𝜔 ) .

(47)

Taking into account that 𝑓(𝑎) = 𝑖𝜋𝑛
2𝑘 and 2𝜔𝑘 = 𝜋, we come to the final form of the

equation:

(48) 𝜋𝑙 + ℎ0(𝛼) = 𝛼(𝑘 − 𝑛).

We claim that equation (48) has at least 𝑘−𝑛−1 solutions for 𝛼 in the open interval
(0, 𝜋).
Indeed, since ℎ0(0) = ℎ0(𝜋) = 0, the end points 𝛼 = 0, 𝛼 = 𝜋 of the open interval

are solutions of equation (48) for 𝑙 = 0 and 𝑙 = 𝑘−𝑛, respectively. (These two solutions
are geometrically trivial, corresponding to 𝛼 = 2𝛽 = 0 and 𝛼 = 2𝛽 = 𝜋 for the initial
geometric problem.) Therefore, for all intermediate levels of 𝑙, that is, for 𝑙 ∈ [1, 𝑘 −
𝑛 − 1], there exists a solution of equation (48). This proves the claim.
We shall prove now that the number of solutions of equation (48) in the interval

(0, 𝜋) is exactly equal to (𝑘 − 𝑛 − 1). For equation (44), it suffices to show that the
function

Im(∫
𝛼−𝜔

0
𝜁(𝑖𝑏 + 𝑡)𝑑𝑡) − 𝛼

𝑖 [𝜁(𝜔 + 𝑖𝑏) − 𝜁(𝜔)]

has non-vanishing derivative with respect to 𝛼. Arguing by contradiction, suppose that

Im (𝜁(𝑖𝑏 + 𝛼 − 𝜔) − [𝜁(𝜔 + 𝑖𝑏) − 𝜁(𝜔)]) = 0.
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Notice that 𝜁(𝜔) is real, and 𝜁(𝜔+𝛼+ 𝑖𝑏) and 𝜁(−𝜔+𝛼+ 𝑖𝑏) have the same imaginary
part. Hence
(49) Im (𝜁(𝑖𝑏 + 𝛼 + 𝜔) − 𝜁(𝜔 + 𝑖𝑏)) = 0.
Using the addition formula, we have

𝜁(𝑖𝑏 + 𝜔 + 𝛼) = 𝜁(𝑖𝑏 + 𝜔) + 𝜁(𝛼) + ℘′(𝑖𝑏 + 𝜔) − ℘′(𝛼)
2(℘(𝑖𝑏 + 𝜔) − ℘(𝛼)) .

It then follows from equation (49) that

𝜁(𝛼) + ℘′(𝑖𝑏 + 𝜔) − ℘′(𝛼)
2(℘(𝑖𝑏 + 𝜔) − ℘(𝛼)) ∈ ℝ.

Moreover, the values 𝜁(𝛼),℘(𝑖𝑏+𝜔),℘(𝛼),℘′(𝛼) are all real. We conclude that℘′(𝑖𝑏+
𝜔) ∈ ℝ.
On the other hand,

𝑖𝑏 + 𝜔 ∈ (𝜔, 𝜔′) ⇒ 𝑒2 < ℘(𝑖𝑏 + 𝜔) < 𝑒1.
Thus the equation (℘′)2 = 4(℘ − 𝑒1)(℘ − 𝑒2)(℘ − 𝑒3) implies that℘′(𝑖𝑏 + 𝜔) ∈ 𝑖ℝ, a
contradiction. This completes the proof of Theorem 7 in Case 1.

Case 2. In this case𝑚 > 0, 𝑎 = 𝑖𝑏 ∈ [0, 𝜔′], 𝑏 ∈ ℝ . Using 𝜍′
𝜍 = 𝜁, we write

𝜎(𝑧) = 𝜎(𝑧0) exp(∫
𝑧

𝑧0
𝜁(𝑡)𝑑𝑡) .

Taking log, we rewrite equation (41) in the form

∫
𝛼

−𝛼
𝜁(𝑖𝑏 + 𝑡)𝑑𝑡 + 2𝜋𝑖𝑙 = 2𝛼𝜁(𝑖𝑏), 𝑙 ∈ ℤ.

Using that 𝜁 is odd, rewrite this as

2𝜋𝑖𝑙 +∫
𝛼

0
[𝜁(𝑖𝑏 + 𝑡) − 𝜁(−𝑖𝑏 + 𝑡)]𝑑𝑡 = 2𝛼𝜁(𝑖𝑏).

Notice that both sides of this equation are purely imaginary, and hence

(50) 𝜋𝑙 + Im(∫
𝛼

0
𝜁(𝑖𝑏 + 𝑡)𝑑𝑡) = 1

𝑖 𝛼𝜁(𝑖𝑏).

On the right hand side we have a linear function of 𝛼. Let us denote the integral on the
left hand side of equation (50) by

𝑔(𝛼) ≔ Im(∫
𝛼

0
𝜁(𝑖𝑏 + 𝑡)𝑑𝑡) .

Lemma 4.13. For any 𝑟 ∈ ℕ, we have

Im(∫
2𝜔𝑟

0
[𝜁(𝑖𝑏 + 𝑡)𝑑𝑡) = −𝜋𝑟 + 2𝑟𝜁(𝜔)𝑏.

Proof. This follows from the residue formula for the rectangular path
𝑖𝑏 → 2𝜔𝑟 + 𝑖𝑏 → 2𝜔𝑟 − 𝑖𝑏 → −𝑖𝑏 → 𝑖𝑏,

avoiding the singular points of 𝜁 at 0 and 2𝜔𝑟 by small half circles. □
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In particular, using Lemma 4.13 for 𝑟 = 1 and the quasi-periodicity of 𝜁, we compute

𝑔(𝛼 + 2𝜔) = 𝑔(𝛼) + 1
𝑖 ∫

2𝜔

0
𝜁(𝑖𝑏 + 𝑡)𝑑𝑡 = 𝑔(𝛼) − 𝜋 + 2𝜁(𝜔)𝑏.

Using this, one can express 𝑔 as the sum of a linear and a 2𝜔-periodic function as fol-
lows:

𝑔(𝛼) = (−𝜋 + 2𝜁(𝜔)𝑏
2𝜔 ) 𝛼 + ℎ(𝛼), 𝑔(0) = ℎ(0) = 0,

where ℎ is 2𝜔-periodic. Therefore, equation (50) takes the form

𝜋𝑙 + ℎ(𝛼) = −(−𝜋 + 2𝜁(𝜔)𝑏
2𝜔 ) 𝛼 + 1

𝑖 𝛼𝜁(𝑖𝑏),

hence
𝜋𝑙 + ℎ(𝛼) = 𝛼 (1𝑖 𝜁(𝑖𝑏) −

−𝜋 + 2𝜁(𝜔)𝑏
2𝜔 ) .

Thus we arrive at the following equation

𝜋𝑙 + ℎ(𝛼) = 𝛼 ( 𝜋2𝜔 + 2𝜔𝜁(𝑖𝑏) − 2𝜁(𝜔)𝑖𝑏
2𝜔𝑖 ) = 𝛼 ( 𝜋2𝜔 − 2𝑓(𝑖𝑏)

2𝜔𝑖 ) .

Next, taking into account that 𝑓(𝑖𝑏) = 𝑓(𝑎) = 𝑖𝜋𝑛
2𝑘 and 2𝜔𝑘 = 𝜋, we obtain the

simplest possible form:
(51) 𝜋𝑙 + ℎ(𝛼) = 𝛼(𝑘 − 𝑛).
Also in this case we claim that equation (51) has at least 𝑘−𝑛−1 solutions for 𝛼 in the
open interval (0, 𝜋).
Indeed, since ℎ(0) = ℎ(𝜋) = 0, the end points 𝛼 = 0, 𝛼 = 𝜋 of the open interval

are solutions of equation (51) for 𝑙 = 0 and 𝑙 = 𝑘 − 𝑛, respectively. Therefore, for all
intermediate levels of 𝑙, that is, for 𝑙 ∈ [1, 𝑘 − 𝑛− 1], there exists a solution of equation
(51). This proves the claim.
We shall prove now that the number of solutions of equation (51) in the interval

(0, 𝜋) equals exactly 𝑘−𝑛−1. Consider equation (50). We shall check that the function

Im(∫
𝛼

0
𝜁(𝑖𝑏 + 𝑡)𝑑𝑡 − 𝛼𝜁(𝑖𝑏))

has everywhere non-vanishing derivative with respect to 𝛼 when 𝑖𝑏 ∈ (0, 𝜔′).
Suppose, on the contrary, that the derivative vanishes for some 𝛼:

(52) Im (𝜁(𝑖𝑏 + 𝛼) − 𝜁(𝑖𝑏)) = 0.
Using the addition formula for 𝜁, we have

𝜁(𝑖𝑏 + 𝛼) = 𝜁(𝑖𝑏) + 𝜁(𝛼) + ℘′(𝑖𝑏) − ℘′(𝛼)
2(℘(𝑖𝑏) − ℘(𝛼)) .

Taking the imaginary part and using equation (52), we obtain

𝜁(𝛼) + ℘′(𝑖𝑏) − ℘′(𝛼)
2(℘(𝑖𝑏) − ℘(𝛼)) ∈ ℝ.

Also we know that 𝜁(𝛼), ℘(𝑖𝑏), ℘(𝛼), ℘′(𝛼) are all real. Therefore we conclude that
℘′(𝑖𝑏) ∈ ℝ. But, on the other hand, ℘ satisfies the equation (℘′)2 = 4(℘ − 𝑒1)(℘ −
𝑒2)(℘ − 𝑒3).Moreover,

𝑖𝑏 ∈ (0, 𝜔′) ⇒ ℘(𝑖𝑏) < 𝑒3 ⇒ ℘′(𝑖𝑏) ∈ 𝑖ℝ.
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This contradiction completes the proof in Case 2.

□

Theorem 7 has Corollary 4.14.

Corollary 4.14. All the solutions of equation (41) are transversal and hence change
smoothly as one varies the parameter 𝜔′ of the elliptic functions involved.

4.3. Self-Bäcklund curves as deformations of conics. In this section we use the
self-Bäcklund curves of Section 4.2 in order to construct genuine non-trivial
self-Bäcklund deformations of a central conic, as was promised in Section 3.1, see
Corollary 4.20.
To state the result, we recall briefly from Section 4.2 our construction of simple self-

Bäcklund centroaffine 𝜋-anti-periodic curves. For every integer 𝑘 ≥ 3 and 𝜔′ ∈ 𝑖ℝ+
one considers the Weierstrass ℘-function with half periods 𝜔 = 𝜋/2𝑘, 𝜔′, the associ-
ated 𝜎- and 𝜁-functions and the (unique) solution 𝑎 ∈ (𝜔, 𝜔′) to

(53) 𝑎𝜁(𝜔) − 𝜔𝜁(𝑎) = 𝑖𝜔,

then set

(54) 𝑌(𝑡) ≔ 𝑋(𝑡)/𝑁,

where

(55) 𝑋(𝑡) ≔ 𝜎(𝑎 + 𝑡 + 𝜔′)𝜎(𝜔′)
𝜎(𝑎 + 𝜔′)𝜎(𝑡 + 𝜔′) 𝑒

−𝑡𝜁(𝑎), 𝑁 ≔ √|𝑋 ′(0)|.

Remark 4.15. The normalization factor 𝑁 = √|𝑋 ′(0)| in equations (54)-(55) is intro-
duced so as to render the normalized curve 𝑌 centroaffine and 𝜋-anti-periodic (enclos-
ing area 𝜋). See Remark 4.9 for an explicit expression for 𝑁.

The deformations of the unit circle we are seeking are obtained by fixing 𝑘 and
letting 𝜔′ → ∞ in the above construction. To examine this limit we let 𝜔′ = 𝑖/𝑠,
𝑠 ∈ (0, 1], and use henceforth the subscript 𝑠 to denote all associated objects, such as
℘𝑠, 𝜎𝑠, 𝜁𝑠, 𝑎𝑠, 𝑋𝑠, 𝑁𝑠 and 𝑌𝑠 (suppressing the dependence on 𝑘, which is fixed through-
out the section). Our goal in this section is to prove Theorem 8, illustrated in Figure
16.

Theorem 8. For each integer 𝑘 ≥ 3,
(1) The family of curves 𝑌𝑠(𝑡), 𝑠 ∈ (0, 1], given by equations (53)-(55)with𝜔 = 𝜋/2𝑘,

𝜔′ = 𝑖/𝑠, extends smoothly to 𝑠 ∈ [0, 1] by setting 𝑌0(𝑡) ≔ 𝑒𝑖𝑡.
(2) Each curve 𝑌𝑠(𝑡) is a centroaffine 𝜋-anti-periodic simple curve with 2𝑘-fold sym-

metry, 𝑌𝑠(𝑡 + 𝜋/𝑘) = 𝑌𝑠(𝑡)𝑒𝑖𝜋/𝑘, self-Bäcklund for 𝑠 > 0 with respect to 𝑘 − 2
rotation numbers 𝛼 ∈ (0, 𝜋), varying smoothly in 𝑠 ∈ [0, 1] and converging as
𝑠 → 0 to the 𝑘 − 2 solutions of equation (19), tan(𝑘𝛼) = 𝑘 tan 𝛼.

(3) The deformation 𝑌𝑠, 𝑠 ∈ [0, 1], is analytic away from 𝑠 = 0 but not at 𝑠 = 0.
In fact, one has (𝜕𝑠)

𝑛||𝑠=0 𝑌𝑠(𝑡) = 0, 𝑛 ≥ 1, so the associated infinitesimal de-
formation of the unit circle vanishes to all orders, yet the deformation itself is
non-trivial.
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(4) The change of parameter,

(56) 𝜀 ≔ {
𝑒−2𝑘/𝑠, 𝑠 > 0,

0, 𝑠 = 0,

gives a deformation 𝑌𝜀 of the unit circle 𝑌0, analytic in 𝜀 ∈ [0, 𝑒−2𝑘].
(5) The infinitesimal deformation associatedwith the analytic deformation𝑌𝜀 is non-

trivial. That is,
𝑌𝜀(𝑡) = 𝑒𝑖𝑡 + 𝑌1(𝑡)𝜀 + 𝑂(𝜀2),

where 𝑌1 is non-vanishing.

k = 3 k = 4 k = 5

Figure 16. Theorem 8. Three families of deformations of the circle
(black) through a 1-parameter family of centroaffine self-Bäcklund
curves 𝑌𝑠 (blue) with 2𝑘-fold symmetry, 𝑘 = 3, 4, 5.

Proof. Themain idea of the proof of this theorem is to write the functions 𝑋𝑠, 𝑠 ∈ [0, 1],
as suitably normalized Floquet eigenfunctions of a Hill operator depending smoothly
on 𝑠, and use a general argument of smooth dependence of the eigenfunctions of a Hill
operator depending on the smooth parameter. Similarly, when replacing 𝑠 with 𝜀 the
Hill operator depends analytically on 𝜀 and so do its eigenfunctions.
In more detail, we recall from Section 4.2 that 𝑋𝑠, 𝑠 ∈ (0, 1], is precisely the eigen-

function corresponding to the smallest eigenvalue 𝜆0,𝑠 for the Floquet problem

(57) 𝑋″ + (𝜆 − 2𝑞𝑠(𝑡))𝑋 = 0, 𝑋(𝑡 + 𝜋/𝑘) = 𝜇𝑋(𝑡), 𝜇 = 𝑒𝑖𝜋/𝑘,

where 𝑞𝑠(𝑡) = ℘(𝑖/𝑠 + 𝑡) and 𝑋𝑠 satisfy the normalization condition 𝑋𝑠(0) = 1. More-
over, we showed that 𝜆0,𝑠 = −℘𝑠(𝑎𝑠), where 𝑎𝑠 ∈ (𝜔, 𝜔′) is the (unique) solution to
equation (53).
Following this idea, we begin by extending 𝑞𝑠 smoothly to 𝑠 = 0.

Lemma 4.16.
(A) The function

𝑞𝑠(𝑡) ≔ {
℘𝑠(𝑡 + 𝑖/𝑠), 𝑠 ≠ 0,

−𝑘2/3, 𝑠 = 0
depends smoothly on (𝑠, 𝑡) ∈ [0, 1] × ℝ.
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(B) The change of parameter 𝑠 ↦ 𝜀 of equation (56) transforms the deformation 𝑞𝑠
to 𝑞𝜀 which is real analytic in 𝜀 ∈ [0, 𝑒−2𝑘], with Taylor series

(58) 𝑞𝜀 = −𝑘
2

3 − 8𝑘2 cos(2𝑘𝑡)𝜀 + 𝑂(𝜀2).

We postpone the proof of Lemma 4.16, as well as Lemmas 4.17–4.19, to the end of
this section.

Lemma 4.17. The eigenfunctions 𝑋𝑠(𝑡), 𝑠 ∈ [0, 1], corresponding to the first eigenvalue
𝜆0,𝑠 of the Floquet problem (57), are uniquely determined by the condition 𝑋𝑠(0) = 1 and
are smooth (analytic) in 𝑠 if the potential 𝑞𝑠 is smooth (analytic) in 𝑠.

Lemma 4.18. For every 𝑠 ∈ [0, 1] the curves 𝑌𝑠 are self-Bäcklund for 𝑘 − 2 values of
𝛼𝑠 ∈ (0, 𝜋), satisfying

(59) 𝜎𝑠(𝑎𝑠 + 𝛼𝑠)
𝜎𝑠(𝑎𝑠 − 𝛼𝑠)

= 𝑒2𝛼𝑠𝜁𝑠(𝑎𝑠).

All 𝑘 − 2 solutions 𝛼𝑠 depend smoothly on 𝑠 ∈ [0, 1]. For 𝑠 = 0 this equation reduces to
equation (19) of Theorem 3, 𝑘 tan(𝛼) = tan(𝑘𝛼).Moreover, with respect to the parameter
𝜀 of equation (56) the 𝑘 − 2 families 𝛼𝜀 are analytic in 𝜀 ∈ [0, 𝑒−2𝑘].

Lemma 4.19. 𝑋𝜀 has a Taylor series in 𝜀,

𝑋𝜀(𝑡) = 𝑒𝑖𝑡 + 𝑋1(𝑡)𝜀 + 𝑂(𝜀2),

where 𝑋1 is non-vanishing.

With Lemmas 4.16–4.19 the proof of the 5 items of Theorem 8 is straightforward:
by Lemma 4.16, the Hill operator of equation (57) is smooth in 𝑠 ∈ [0, 1] and analytic
in 𝜀 ∈ [0, 𝑒−2𝑘]. This implies, by Lemma 4.17, that 𝑋𝑠 is smooth in 𝑠 and 𝑋𝜀 is analytic
in 𝜀, therefore the same holds for 𝑌𝑠 and 𝑌𝜀. This proves items (1) and (4) of Theorem
8. Lemma 4.18 proves item (2). Item (3) follows from the well-known fact that 𝜀(𝑠) of
formula (56) is “flat” at 𝑠 = 0 (all derivatives exist and vanish). Lemma 4.19 gives item
(5). □

Corollary 4.20. For every value of 𝛼 ∈ (0, 𝜋) for which the unit circle admits a non-
trivial infinitesimal self-Bäcklund deformation (solution of tan(𝑘𝛼) = 𝑘 tan 𝛼 for some
𝑘 ≥ 3) there is a genuine analytic self-Bäcklund deformation realizing it.

Wenowproceed to the promised proofs of Lemmas 4.16–4.19 appearing in the above
proof of Theorem 8.

4.3.1. Proof of Lemma 4.16. By the definition of℘, we have the following series repre-
senting 𝑞𝑠 for 𝑠 > 0:

𝑞𝑠(𝑡) = ℘𝑠(𝑡 + 𝑖/𝑠) = (𝑡 + 𝑖/𝑠)−2

+ ∑
(𝑚,𝑛)≠(0,0)

[(𝑡 + 𝜋𝑛
𝑘 + 𝑖2𝑚 + 1

𝑠 )
−2

− (𝜋𝑛𝑘 + 𝑖2𝑚𝑠 )
−2
] .

(60)

Let 𝑧 ≔ 𝑡 + 𝑖/𝑠, Ω𝑛𝑚 ≔ 𝜋𝑛/𝑘 + 2𝑚𝑖/𝑠,𝑚, 𝑛 ∈ ℤ, 𝑠 > 0. We break the double sum in
the series (60) as a sum∑𝑚 𝑄𝑚, where each 𝑄𝑚 is a series in 𝑛:



SELF-BÄCKLUND CURVES AND LAMÉ’S EQUATION 269

𝑄𝑚 =
⎧
⎨
⎩

∑𝑛∈ℤ [(𝑧 − Ω𝑛𝑚)
−2 − (Ω𝑛𝑚)

−2] , 𝑚 ≠ 0,

∑𝑛∈ℤ,𝑛≠0 [(𝑧 − Ω𝑛0)
−2 − (Ω𝑛0)

−2] , 𝑚 = 0.
We have for 𝑄𝑚 the exact expressions (see [1], page 197, Table I):

𝑄𝑚 =
⎧
⎨
⎩

𝑘2[sin−2 (𝑘(𝑧 − 𝑖 2𝑚𝑠 )) − sin−2 (𝑖 2𝑘𝑚𝑠 )], 𝑚 ≠ 0,

𝑘2[ − 1
3 + sin−2 (𝑘𝑧)], 𝑚 = 0.

Substituting into these formulas 𝑧 = 𝑡 + 𝑖/𝑠, we get

𝑄𝑚 =
⎧
⎨
⎩

𝑘2[sin−2 (𝑘(𝑡 − 𝑖 2𝑚−1
𝑠 )) − sin−2 (𝑖 2𝑘𝑚𝑠 )], 𝑚 ≠ 0,

𝑘2 [− 1
3 + sin−2 (𝑘(𝑡 + 𝑖

𝑠 ))] , 𝑚 = 0.
Thus we have

𝑄𝑚 =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑘2 [(sin(𝑘𝑡) cosh(𝑘 2𝑚−1
𝑠 ) − 𝑖 cos(𝑘𝑡) sinh(𝑘 2𝑚−1

𝑠 ))
−2

−sinh−2( 2𝑘𝑚𝑠 )] , 𝑚 ≠ 0,

𝑘2 [− 1
3 + (sin(𝑘𝑡) cosh(𝑘𝑠 ) + 𝑖 cos(𝑘𝑡) sinh(𝑘𝑠 ))

−2
] , 𝑚 = 0.

Next introduce the change of parameter, 𝑠 ↦ 𝜏 = 𝑒−𝑘/𝑠, 0 ≤ 𝜏 ≤ 𝜏0 = 𝑒−𝑘, ie 𝜀 = 𝜏2. In
terms of 𝜏, we have

𝑄𝑚 =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

4𝑘2 [(sin(𝑘𝑡)(𝜏1−2𝑚 + 𝜏2𝑚−1)

− 𝑖 cos(𝑘𝑡)(𝜏1−2𝑚 − 𝜏2𝑚−1))−2

−(𝜏−2𝑚 − 𝜏2𝑚)−2] , 𝜏 > 0,𝑚 ≠ 0,

0, 𝜏 = 0,𝑚 ≠ 0,

𝑄0 =
⎧⎪
⎨⎪
⎩

𝑘2 [− 1
3 + 4 (sin(𝑘𝑡)(𝜏−1 + 𝜏)

+𝑖 cos(𝑘𝑡) (𝜏−1 − 𝜏))−2] , 𝜏 > 0,

− 1
3𝑘

2, 𝜏 = 0.

(61)

From formulas (61) one can conclude the following facts:
(1) The series

𝑞 = ∑
𝑚∈ℤ

𝑄𝑚

converges as 𝜏 → 0, uniformly in (𝜏, 𝑡) ∈ [0, 𝜏0] × ℝ, to the constant function
𝑞0 = − 1

3𝑘
2. This follows from the estimate

|𝑄𝑚| ≤ 𝐶(𝜏0)(𝜏4|𝑚|
0 + 𝜏|4𝑚−2|

0 )
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for some constant 𝐶(𝜏0) > 0. Since 𝜏0 = 𝑒−𝑘 < 1 this implies uniform conver-
gence in [0, 𝜏0] × ℝ.

(2) Every term 𝑄𝑚 in equation (61) is analytic in 𝜏 at 𝜏 = 0 with radius of con-
vergence 𝑅𝑚 = 1 > 𝜏0. To see this, one represents each term in the square
brackets of (61) as a rational function of 𝜏 and finds that its poles all lie on the
unit circle in the complex 𝜏 plane. Hence 𝑅𝑚 = 1.

(3) It follows from items (1) and (2), by Weierstrass theorem, that the sum of the
series∑𝑄𝑚, which equals exactly 𝑞𝜏(𝑡), is analytic in 𝜏 ∈ [0, 𝜏0].

(4) Each 𝑄𝑚 in equation (61) is clearly even in 𝜏, hence so is 𝑞. Thus, with the
change of variable 𝜀 = 𝜏2, 𝑞𝜀 becomes analytic in 𝜀.

(5) The following 1st order Taylor expansions at 𝜏 = 0 hold:

(62) 𝑄0 = −𝑘
2

3 − 4𝑘2𝑒2𝑖𝑘𝑡𝜏2 + . . . , 𝑄1 = −4𝑘2𝑒−2𝑖𝑘𝑡𝜏2 + . . . ,

and 𝑄𝑚 is of order 𝜏4𝑚−2 for𝑚 > 0, which implies equation (58).

4.3.2. Proof of Lemma 4.17. Notice that, for a given periodic potential 𝑞(𝑡), the problem
(57) of Floquet eigenvalues has the following properties (see [22, page 32]):

(1) The eigenvalues 𝜆𝑚(𝜇) are solutions of the equation

(63) Δ(𝜆) = 2 cos(𝜋𝑘 ) .

Here and below, Δ(𝜆) = tr𝑀(𝜆) is the trace of the monodromy matrix of equa-
tion (57). It is defined as follows. Fix a basis of solutions {𝑦1(𝜆, 𝑡), 𝑦2(𝜆, 𝑡)} of
the second order differential equation

𝑋″ + (𝜆 − 2𝑞(𝑡))𝑋 = 0,
such that

𝑦1(𝜆, 0) = 𝑦′2(𝜆, 0) = 1, 𝑦′1(𝜆, 0) = 𝑦2(𝜆, 0) = 0.
Then the monodromy matrix is

𝑀(𝑡, 𝜆) = (𝑚11 𝑚12
𝑚21 𝑚22

) = (𝑦1(2𝜔, 𝜆) 𝑦2(2𝜔, 𝜆)
𝑦′1(2𝜔, 𝜆) 𝑦′2(2𝜔, 𝜆)

) , det(𝑀) = 1.

(2) The graph of the function Δ(𝜆) (see Figure 14) is such that all the solutions of
equation (63) are transversal. Hence all eigenvalues 𝜆𝑚,𝑠(𝜇) of equation (57),
and, in particular, 𝜆0,𝑠(𝜇), depend smoothly on the parameter 𝑠.

(3) All Floquet eigenvalues 𝜆0,𝑠(𝜇) of equation (57) have multiplicity 1, because if
𝑋 is an eigenfunction for some non-real Floquet exponent 𝜇, then 𝑋 is not.

In our situation, we have a smooth family of potentials 𝑞𝑠(𝑡). So we have the standard
basis {𝑦1(𝜆, 𝑠, 𝑡), 𝑦2(𝜆, 𝑠, 𝑡)}, where

𝑦1(𝜆, 𝑠, 0) = 𝑦′2(𝜆, 𝑠, 0) = 1, 𝑦′1(𝜆, 𝑠, 0) = 𝑦2(𝜆, 𝑠, 0) = 0,
and the monodromy matrix 𝑀(𝜆, 𝑠) which is smooth in 𝜆, 𝑠. We can write the eigen-
function corresponding to 𝜆𝑚,𝑠(𝜇) in the form

𝑋 = 𝐴𝑦1 + 𝐵𝑦2,
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for some complex 𝐴, 𝐵. Then the Floquet boundary conditions in terms of 𝐴, 𝐵 reads

(64) (𝑀(𝜆, 𝑠) − 𝜇𝐼𝑑) ⋅ (𝐴𝐵) = 0.

Moreover, it follows from properties (2) and (3) above that, for 𝜆 = 𝜆𝑚,𝑠, the matrix
(𝑀 − 𝜇𝐼𝑑) has rank 1 and that 𝑀(𝜆𝑚,𝑠, 𝑠) depends smoothly on 𝑠. The normalization
𝑋(0) = 1 implies that 𝐴 = 1 and hence 𝐵 can be found uniquely from (64),

𝐵 = −(𝑚11 − 𝜇)/𝑚12.
It is important that the denominator𝑚12 in this formula cannot vanish, because other-
wise the matrix𝑀 would be triangular having real eigenvalues, which is not the case,

since 𝜇 is not real. Thus we conclude that the solution (𝐴𝐵) of equation (64) is smooth
in 𝑠 ∈ [0, 1]. An analogous proof applies when the potential 𝑞𝜀 depends analytically
on 𝜀 ∈ [0, 𝑒−2𝑘]. This completes the proof of our Lemma.

4.3.3. Proof of Lemma 4.18. The functions ℘𝑠, 𝜎𝑠, 𝜁𝑠 depend analytically on 𝑠 ∈ (0, 1]
and can be shown to converge, as 𝑠 → 0, to the limiting functions (see [1, page 201])

℘0(𝑧) = −𝑘
2

3 + 𝑘2sin−2(𝑘𝑧), 𝜁0(𝑧) =
𝑘2
3 𝑧 + 𝑘 cot(𝑘𝑧),

𝜎0(𝑧) =
1
𝑘𝑒

𝑘2𝑧2/6 sin(𝑘𝑧).
(65)

Using the above formula for 𝜁0, we compute that equation (53) for 𝑠 = 0 is equivalent
to

(66) 𝑎 = 𝜋
2𝑘 + 𝑖𝑏, tanh(𝜋𝑏2 ) = 1

𝑘 .

Consider equation (59) on 𝛼 for 𝑠 = 0 :
𝜎0(𝑎 + 𝛼)
𝜎0(𝑎 − 𝛼) = 𝑒2𝛼𝜁0(𝑎),

where 𝑎 is the solution of equation (53) for 𝑠 = 0. Set

𝐹(𝛼) ≔ 𝜎0(𝑎 + 𝛼)
𝜎0(𝑎 − 𝛼)𝑒

−2𝛼𝜁0(𝑎).

Using the explicit formulas (65)-(66), we have:

𝐹(𝛼) = sin(𝑘(𝑎 + 𝛼))
sin(𝑘(𝑎 − 𝛼))𝑒

𝑖2𝛼 =
1 − 𝑖 1𝑘 tan(𝑘𝛼)
1 + 𝑖 1𝑘 tan(𝑘𝛼)

𝑒𝑖2𝛼.

This immediately implies that the equation 𝐹 = 1 is equivalent to the familiar equation
(19):

𝑘 tan(𝛼) = tan(𝑘𝛼).
This means that, for 𝑠 = 0, equation (59) has precisely 𝑘 − 2 solutions for 𝛼 ∈ (0, 𝜋).
Moreover, differentiating 𝐹 at a point 𝛼 where 𝐹(𝛼) = 1 we have:

𝐹′(𝛼) = 2𝑖 (1 − 𝑘2) tan2 𝑘𝛼
𝑘2 + tan2 𝑘𝛼

≠ 0.

Applying the implicit function theorem, we conclude that all 𝑘−2 solutions of equation
(59) can be smoothly extended from 𝑠 = 0 to 𝑠 > 0. This, together with Theorem 7 and
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Corollary 4.14, implies the existence of 𝑘 − 2 solutions for every 𝑠 ∈ [0, 1], smoothly
depending on 𝑠. An analogous proof applies for analytic dependence on 𝜀 ∈ [0, 𝑒−2𝑘].

4.3.4. Proof of Lemma 4.19. We calculate mod 𝜀2. Use the Taylor expansion (58),

𝑞𝜀 = −𝑘
2

3 − 8𝑘2 cos(2𝑘𝑡)𝜀 + . . . ,

and let𝑋𝜀 = 𝑒𝑖𝑡+𝑋1𝜀+. . . , 𝜆0,𝜀 = 𝜆0+𝜆1𝜀+. . .. Substitute these into𝑋″+(𝜆−2𝑞)𝑋 = 0
and solve for successive powers of 𝜀. The 𝜀0 term gives

𝜆0 = 1 − 2𝑘2/3
and the 𝜀1 term gives

𝑋″
1 + 𝑋1 + 8𝑘2 (𝑒𝑖(1+2𝑘)𝑡 + 𝑒𝑖(1−2𝑘)𝑡) + 𝜆1𝑒𝑖𝑡 = 0.

The general solution is

𝑋1 = 𝐴+𝑒𝑖(1+2𝑘)𝑡 + 𝐴−𝑒𝑖(1−2𝑘)𝑡 + 𝐵+𝑒𝑖𝑡 + 𝐵−𝑒−𝑖𝑡 +
𝜆1
2𝑖 𝑡𝑒

𝑖𝑡,

where 𝐴± = 2𝑘/(𝑘 ± 1) ≠ 0 and 𝐵± ∈ ℂ are arbitrary. Since 𝑋1 is periodic we must
have 𝜆1 = 0 and what remains is non-vanishing.

5. Self-Bäcklund polygons

5.1. Centroaffine butterflies, Bianchi permutability. The central projection ℝ2 ⧵
{0} → ℝℙ1 takes a centroaffine curve to a curve in the projective line. Conversely, a
projective curve admits a unique lift to a centroaffine curve. Bianchi permutability for
𝑐-relation was established for projective curves, in [44]. Here we do it for centroaffine
curves.
Let us say that a quadrilateral 𝑃1𝑃2𝑃3𝑃4 forms a centroaffine butterfly if

(67) [𝑃1, 𝑃2] = [𝑃4, 𝑃3] and [𝑃2, 𝑃3] = [𝑃1, 𝑃4].
Note that a centroaffine butterfly is not necessarily a centroaffine polygon.

Lemma 5.1. A generic quadrilateral 𝑃1𝑃2𝑃3𝑃4 is a centroaffine butterfly if and only if
any of the following equivalent conditions are satisfied:

(1) There is a linear involution I ∈ GL2(ℝ) interchanging 𝑃1𝑃2 and 𝑃3𝑃4. That is,
I(𝑃1) = 𝑃3, I(𝑃2) = 𝑃4, I(𝑃3) = 𝑃1, I(𝑃4) = 𝑃2.

(2) The line segments 𝑃1𝑃3, 𝑃2𝑃4 are parallel and their midpoints are collinear. See
Figure 17.

(3) 𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑑 is a centroaffine butterfly, where 𝑎𝑏𝑐𝑑 is any of the 8 permutations of
1234 generated by (1234), (24), (12)(34).

Proof. (1) By applying a linear transformation, we can assume that 𝑃1 = (1, 0), 𝑃3 =
(0, 1). Let 𝑃3 = (𝑐, 𝑑). Then equation (67) implies 𝑃4 = (𝑑, 𝑐). Thus I ∶ (𝑥, 𝑦) ↦ (𝑦, 𝑥) is
the required symmetry.
(2) Note that the said segments are parallel and their midpoints are collinear if and
only if [𝑃1 ± 𝑃3, 𝑃2 ± 𝑃4] = 0 (‘−’ for the 1st statement, ‘+’ for the 2nd). By expanding
these expressions we see that they are equivalent to [𝑃1, 𝑃2] = [𝑃4, 𝑃3], [𝑃2, 𝑃3] = [𝑃1, 𝑃4].
(3) This is a simple verification (omitted).

□
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Figure 17. A centroaffine butterfly

It follows from Lemma 5.1 that, given a generic triple of points 𝑃1, 𝑃2, 𝑃3, there is
a unique fourth point 𝑃4 such that 𝑃1𝑃2𝑃3𝑃4 form a centroaffine butterfly. Namely, by
property (1), 𝑃4 = I𝑃2 where I is defined by I𝑃1 = 𝑃3, I𝑃3 = 𝑃1. More geometrically, by
property (2), one constructs the line ℓ through 𝑃2 and parallel to 𝑃1𝑃3, intersects ℓ with
the line through the origin 𝑂 and the midpoint of 𝑃1𝑃3, then finds the unique point 𝑃4
on ℓ such that this intersection point is the midpoint of 𝑃2𝑃4.

Theorem 9 (Bianchi permutability). Consider three centroaffine curves 𝛾, 𝛿, and Γ such
that Γ and 𝛿 are 𝑏- and 𝑐-related to 𝛾 (respectively). Then there exists a fourth centroaffine
curve Δ that is 𝑏-related to 𝛿 and 𝑐-related to Γ. In fact, Δ(𝑡) is the unique point such that
𝛿(𝑡)𝛾(𝑡)Γ(𝑡)Δ(𝑡) form a centroaffine butterfly.

Proof. The idea of the proof is that if 𝛾(𝑡), 𝛿(𝑡) and Γ(𝑡) are considered as three vertices
of time-evolving centroaffine butterfly, then Δ(𝑡) is its fourth vertex.
Specifically, we have

[𝛾, 𝛿] = [Γ, Δ] = 𝑐, [𝛾, Γ] = [𝛿, Δ] = 𝑏,
and need to check that Δ(𝑡) is a centroaffine curve, that is, [Δ, Δ′] = 1.
Using the above relations, one can write Δ as a linear combination of 𝛿 and Γ,

Δ = [𝛾, 𝛿]
[Γ, 𝛿]𝛿 −

[𝛾, Γ]
[Γ, 𝛿]Γ =

𝑐𝛿 − 𝑏Γ
[Γ, 𝛿] .

Then
[Δ, Δ′] = [𝑐𝛿 − 𝑏Γ, 𝑐𝛿′ − 𝑏Γ′]

[Γ, 𝛿]2 = 𝑏2 + 𝑐2 − 𝑏𝑐([𝛿, Γ′] + [Γ, 𝛿′])
[Γ, 𝛿]2 .

Thus we want to show that
(68) 𝑏2 + 𝑐2 − 𝑏𝑐([𝛿, Γ′] + [Γ, 𝛿′]) = [Γ, 𝛿]2.
We have

𝛿 = 𝑓𝛾 + 𝑐𝛾′, Γ = 𝑔𝛾 + 𝑏𝛾′,
hence

𝛿′ = (𝑓′ + 𝑐𝑝)𝛾 + 𝑓𝛾′, Γ′ = (𝑔′ + 𝑏𝑝)𝛾 + 𝑔𝛾′.
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It follows that
[Γ, 𝛿] = 𝑐𝑔 − 𝑏𝑓, [𝛿, Γ′] = 𝑓𝑔 − 𝑐𝑔′ − 𝑏𝑐𝑝, [Γ, 𝛿′] = 𝑓𝑔 − 𝑏𝑓′ − 𝑏𝑐𝑝.

In addition, one has by equation (3):
𝑐𝑓′ = 𝑓2 − 𝑐2𝑝 − 1, 𝑏𝑔′ = 𝑔2 − 𝑏2𝑝 − 1.

Substitute these formulas into equation (68) to obtain a true identity. □

5.2. Rigidity results andflexible examples of self-Bäcklundpolygons. Bäcklund
transformation can be defined on centroaffine polygons. Similarly to its continuous
version, it is a completely integrable dynamical system. We refer to [2] for a detailed
study; see also [33].
For the purpose of this paper, we recall, from Section 1, that an origin-symmetric

2𝑛-gon 𝐏 in ℝ2 with vertices 𝑃𝑖, 𝑖 = 1, . . . , 2𝑛, is called a self-Bäcklund (𝑛, 𝑘)-gon if
[𝑃𝑖, 𝑃𝑖+1] = 1, [𝑃𝑖, 𝑃𝑖+𝑘] = 𝑐

for all 𝑖 and 2 ≤ 𝑘 ≤ 𝑛−2. Such polygons are acted upon by SL2(ℝ). Since 𝑃𝑖+𝑛 = −𝑃𝑖,
we can assume, without loss of generality, that 𝑘 ≤ 𝑛/2.
A regular 2𝑛-gon is a self-Bäcklund (𝑛, 𝑘)-gon for all 2 ≤ 𝑘 ≤ 𝑛/2. We call these self-

Bäcklund (𝑛, 𝑘)-gons and their SL2(ℝ) images trivial. The problem is to find non-trivial
self-Bäcklund (𝑛, 𝑘)-gons.
The next result is analogous to Theorem 9 of [41].

Theorem 10. In the following cases every self-Bäcklund (𝑛, 𝑘)-gon is trivial:
(1) 𝑛 is arbitrary, 𝑘 = 2;
(2) 𝑛 is odd, 𝑘 = 3;
(3) 𝑘 is arbitrary, 𝑛 = 2𝑘 + 1.
(4) 𝑛 = 3𝑘.

On the other hand, there exist non-trivial self-Bäcklund (𝑛, 𝑘)-gons in the following cases:
(1) 𝑛 is even and 𝑘 is odd;
(2) 𝑛 = 2𝑘.

Proof. Each next vertex is a linear combination of the preceding two: 𝑃𝑖+2 = 𝑎𝑖𝑃𝑖+1−𝑃𝑖.
Let 𝑘 = 2. Then [𝑃𝑖, 𝑃𝑖+2] = 𝑐, hence 𝑎𝑖 = 𝑐 for all 𝑖. Let 𝐴 be the linear map defined

by
𝐴(𝑃1) = 𝑃2, 𝐴(𝑃2) = 𝑃3.

We claim that 𝐴 is area preserving and 𝐴(𝑃𝑖) = 𝑃𝑖+1 for all 𝑖. This would imply that the
polygon 𝐏 is centroaffine regular, that is, trivial.
That 𝐴 is area preserving follows from [𝑃1, 𝑃2] = [𝑃2, 𝑃3]. Next,

𝑃3 = −𝑃1 + 𝑐𝑃2, hence 𝐴(𝑃3) = −𝑃2 + 𝑐𝑃3 = 𝑃4.
Repeating this argument, we obtain 𝐴(𝑃𝑖) = 𝑃𝑖+1 for all 𝑖.
Now let 𝑛 be odd and 𝑘 = 3. Consider four consecutive vertices of 𝐏; they satisfy the

Ptolemy-Plücker relation
[𝑃𝑖, 𝑃𝑖+1][𝑃𝑖+2, 𝑃𝑖+3] + [𝑃𝑖+1, 𝑃𝑖+2][𝑃𝑖, 𝑃𝑖+3] = [𝑃𝑖, 𝑃𝑖+2][𝑃𝑖+1, 𝑃𝑖+3].

Therefore
1 + 𝑐 = [𝑃𝑖, 𝑃𝑖+2][𝑃𝑖+1, 𝑃𝑖+3].

It follows that [𝑃𝑖, 𝑃𝑖+2] = [𝑃𝑖+2, 𝑃𝑖+4] for all 𝑖.
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Recall that 𝑛 is odd and that 𝑃𝑖+𝑛 = −𝑃𝑖 for all 𝑖. This implies that

[𝑃𝑖, 𝑃𝑖+2] = [𝑃𝑛+𝑖, 𝑃𝑛+𝑖+2] = [𝑃𝑖+1, 𝑃𝑖+3],

and hence [𝑃𝑖, 𝑃𝑖+2] has the same value for all 𝑖. Thus 𝐏 is a self-Bäcklund (𝑛, 2)-gon,
the already considered case.
Next, let 𝑛 = 2𝑘 + 1. First we notice that [𝑃𝑖, 𝑃𝑖+𝑘+1] = 𝑐. Indeed,

[𝑃𝑖, 𝑃𝑖+𝑘] = [𝑃𝑖+𝑘+1, 𝑃𝑖+𝑛] = [𝑃𝑖, 𝑃𝑖+𝑘+1].

Now consider the quadruple of vertices 𝑃𝑖, 𝑃𝑖+1, 𝑃𝑖+𝑘, 𝑃𝑖+𝑘+1. The Ptolemy-Plücker re-
lation implies that

[𝑃𝑖+1, 𝑃𝑖+𝑘] =
𝑐2 − 1
𝑐

for all 𝑖. That is, [𝑃𝑖, 𝑃𝑖+𝑘−1] is independent of 𝑖.
Continuing in the same way, we reduce 𝑘 until we get to the case 𝑘 = 2, considered

above, and we conclude that 𝐏 is centroaffine regular.
Now let 𝑛 = 3𝑘. Let us scale the polygon so that [𝑃𝑖, 𝑃𝑖+𝑘] = √3/2 for all 𝑖 (as for a

regular 6𝑘-gon inscribed in a unit circle). Then [𝑃𝑖, 𝑃𝑖+1] = 𝑡, a constant.
Each hexagon 𝐏 𝑖 ≔ (𝑃𝑖, 𝑃𝑖+𝑘, 𝑃𝑖+2𝑘, 𝑃𝑖+3𝑘, 𝑃𝑖+4𝑘, 𝑃𝑖+5𝑘) is affine-regular, and they

are all equivalent under SL2(ℝ). Hence we assume, without loss of generality, that
the vertices of 𝐏0 are the sixth roots of unity. Let 𝐴 ∈ SL2(ℝ) take 𝐏0 to 𝐏1. A quick
calculation, using the equations

[𝑃0, 𝑃1] = [𝑃𝑘, 𝑃𝑘+1] = [𝑃2𝑘, 𝑃2𝑘+1] = [𝑃3𝑘, 𝑃3𝑘+1] = [𝑃4𝑘, 𝑃4𝑘+1] = [𝑃5𝑘, 𝑃5𝑘+1] = 𝑡,

reveals that 𝐴 is a rotation

𝐴 = [cos 𝛼 − sin 𝛼
sin 𝛼 cos 𝛼 ] , 𝑡 = sin 𝛼.

The same argument, applied to the linear map that takes 𝐏1 to 𝐏2, shows that this
map is the same rotation, 𝐴. And so on, showing that the polygon is regular.
Let us construct non-trivial self-Bäcklund (𝑛, 𝑘)-gons for even 𝑛 and odd 𝑘. Start

with a regular 2𝑛-gon, and consider the midpoints of its sides. These points are the
vertices of another regular 2𝑛-gon. Dilate the latter 2𝑛-gon with the center of dilation
at its center. We obtain a centrally symmetric 4𝑛-gon having a dihedral symmetry,
and this symmetry implies [𝑃𝑖, 𝑃𝑖+𝑘] = [𝑃𝑖+1, 𝑃𝑖+𝑘+1]. See Figure 18 on the left. (The
projection of this polygon to ℝℙ1 is a regular 𝑛-gon therein.)
The construction of a non-trivial self-Bäcklund (2𝑘 + 4, 𝑘 + 2)-gon is presented in

Figure 18 on the right (where 𝑘 = 2).1 This polygon has two axes of symmetry. In the
general case, one has points (𝑎, 1), (𝑎 + 1, 1), . . . , (𝑎 + 𝑘, 1) on a horizontal line with

𝑎 = √𝑘2 + 8 − 𝑘
4 , 𝑐 = √𝑘2 + 8 + 𝑘

2 .

One checks that [𝑃𝑖, 𝑃𝑖+1] = 1 and [𝑃𝑖, 𝑃𝑖+𝑘+2] = 𝑐 for all 𝑖. □

1We are grateful to Michael Cuntz for suggesting this construction.
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Figure 18. Left: a self-Bäcklund (8, 3)-gon. Right: a self-Bäcklund
(8, 4)-gon.

5.3. Infinitesimal deformations of regular polygons. Here we consider the lin-
earized problem, that is, infinitesimal deformations of regular polygons as
self-Bäcklund (𝑛, 𝑘)-gons; this is a discrete analog of the material in Section 3.1.
Call a regular polygon infinitesimally rigid as a self-Bäcklund (𝑛, 𝑘)-gon if each of its

infinitesimal deformations in the class of self-Bäcklund (𝑛, 𝑘)-gons is induced by the
action of 𝔰𝔩(2, ℝ).

Theorem 11. A regular 2𝑛-gon is infinitesimally rigid as a self-Bäcklund (𝑛, 𝑘)-gon un-
less one of the following holds:

(1) 𝑛 is even and 𝑘 is odd;
(2) 𝑛 = 2𝑘 with even 𝑘 > 2;
(3) there exists an integer 𝑗 with 2 ≤ 𝑗 ≤ 𝑛 − 2 such that 𝑛 = 2(𝑘 + 𝑗) and 𝑛 divides

(𝑘 − 1)(𝑗 − 1).

Corollary 5.2. A regular 2𝑛-gon is infinitesimally rigid as a self-Bäcklund (𝑛, 𝑘)-gon if
𝑛 is odd, or if both 𝑛 and 𝑘 are even, 𝑘 < 𝑛/2, and gcd (𝑛, 𝑘) > 2.

Proof. The first statement of the corollary follows immediately from Theorem 11.
For the second statement, assume that a non-trivial infinitesimal deformation exists.

We claim that 𝑘 and 𝑗 are coprime. Indeed, if (𝑗, 𝑘) = 𝑝, then 𝑛 = 2(𝑗 + 𝑘) ≡ 0mod 𝑝,
but (𝑗 − 1)(𝑘 − 1) ≡ 1mod 𝑝. This contradicts the fact that 𝑛 divides (𝑗 − 1)(𝑘 − 1). It
follows that

(𝑛, 𝑘) = (2(𝑗 + 𝑘), 𝑘) = 2(𝑗, 𝑘) = 2,
proving the second statement. □

Now we prove Theorem 11.

Proof. Let
𝑃𝑗 = (cos(𝜋𝑗𝑛 ) , sin(𝜋𝑗𝑛 )) , 𝑗 = 1, . . . , 2𝑛,

be the vertices of a regular 2𝑛-gon. We have

[𝑃𝑗 , 𝑃𝑗+1] = sin(𝜋𝑛 ) = 𝑎, [𝑃𝑗 , 𝑃𝑗+𝑘] = sin(𝜋𝑘𝑛 ) = 𝑏.
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(One can rescale to have 𝑎 = 1, but it is not really needed for the argument.)
We also have the respective second-order linear recurrence

(69) 𝑃𝑗+1 = 2 cos(𝜋𝑛 ) 𝑃𝑗 − 𝑃𝑗−1.

Consider an infinitesimal deformation 𝑃𝑗 + 𝜀𝑉 𝑗 , where 𝑉 𝑗 is an 𝑛-anti-periodic se-
quence of vectors, that is, 𝑉 𝑗+𝑛 = −𝑉 𝑗 for all 𝑗, and assume that the resulting polygon
is a self-Bäcklund (𝑛, 𝑘)-gon. By applying a dilation, we may assume that the constant
𝑎 does not change. Then, calculating modulo 𝜀2, we obtain two systems of equations
(70) [𝑃𝑗 , 𝑉 𝑗+1] + [𝑉 𝑗 , 𝑃𝑗+1] = 0, 𝑗 = 1, . . . , 𝑛,
and

(71) [𝑃𝑗 , 𝑉 𝑗+𝑘] + [𝑉 𝑗 , 𝑃𝑗+𝑘] = 𝐶, 𝑗 = 1, . . . , 𝑛,
where 𝐶 is a constant.
Consider the system (70). Let

𝑉 𝑗 = 𝑎𝑗𝑃𝑗 + 𝑏𝑗𝑃𝑗+1 = 𝑐𝑗𝑃𝑗 + 𝑑𝑗𝑃𝑗−1.
Then the recurrence (69) implies that

𝑐𝑗 − 𝑎𝑗
𝑏𝑗

= 2 cos(𝜋𝑛 ) ,
𝑑𝑗
𝑏𝑗

= −1.

Substitute vectors 𝑉 𝑗 into equation (70) to obtain

(72) 𝑎𝑗 = −𝑐𝑗+1, 𝑏𝑗 =
𝑐𝑗 + 𝑐𝑗+1
2 cos(𝜋/𝑛) , 𝑑𝑗 = −

𝑐𝑗 + 𝑐𝑗+1
2 cos(𝜋/𝑛) ,

where 𝑐𝑗 is an 𝑛-periodic sequence to be determined.
Now consider the system (71). Substituting vectors 𝑉 𝑗 , using equation (72), and

collecting terms yields the linear system

(73) 𝜇𝑘−1𝑐𝑗 − 𝜇𝑘+1𝑐𝑗+1 + 𝜇𝑘+1𝑐𝑗+𝑘 − 𝜇𝑘−1𝑐𝑗+𝑘+1 = 𝐶, 𝑗 = 1, . . . , 𝑛,
where 𝜇𝑘 = sin(𝜋𝑘/𝑛).
First, we note that 𝐶 must be zero. Indeed, add equation (73): the left hand side

vanishes, and so must the right hand side.
Second, system (73) has a 3-dimensional space of trivial solutions that correspond

to the action of the Lie algebra 𝔰𝔩2(ℝ). These solutions are given by the formulas

𝑐𝑗 = 1; 𝑐𝑗 = cos(𝜋(2𝑗 − 1)
𝑛 ) ; 𝑐𝑗 = sin(𝜋(2𝑗 − 1)

𝑛 ) .

We need to find out when there are no other solutions.
To this end, consider the eigenvalues of the matrix defining the system (73). This is

a circulant matrix, and its eigenvalues are given by the formula

𝜆𝑗 = 𝜇𝑘−1 − 𝜇𝑘+1𝜔𝑗 + 𝜇𝑘+1𝜔𝑘𝑗 − 𝜇𝑘−1𝜔𝑘+1𝑗 , 𝑗 = 0, . . . , 𝑛 − 1,

where 𝜔𝑗 = 𝑒𝑖
2𝜋𝑗
𝑛 , see [19].

We are interested in zero eigenvalues. One has 𝜆𝑗 = 0 if and only if

𝜔𝑘+1𝑗 =
𝜇𝑘−1 − 𝜇𝑘+1𝜔𝑗
𝜇𝑘−1 − 𝜇𝑘+1𝜔𝑗

.
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Let 2𝛼 be the argument of the unit complex number on the right. A direct calculation
yields

tan 𝛼 = −
sin(𝜋(𝑘+1)𝑛 ) sin( 2𝜋𝑗𝑛 )

sin(𝜋(𝑘−1)𝑛 ) − sin(𝜋(𝑘+1)𝑛 ) cos( 2𝜋𝑗𝑛 )
.

The argument of 𝜔𝑘+1𝑗 is 2𝜋𝑗(𝑘 + 1)/𝑛, hence (after cleaning up the formulas)

sin(𝜋𝑗(𝑘 + 1)
𝑛 ) sin(𝜋(𝑘 − 1)

𝑛 ) = sin(𝜋𝑗(𝑘 − 1)
𝑛 ) sin(𝜋(𝑘 + 1)

𝑛 ) ,

or, equivalently,

(74) tan(𝜋𝑗𝑛 ) tan(𝜋𝑘𝑛 ) = tan(𝜋𝑗𝑘𝑛 ) tan(𝜋𝑛 ) .

Note the trivial solutions 𝑗 = 0, 1, 𝑛 − 1, corresponding to the action of 𝔰𝔩2(ℝ). Let us
assume that 2 ≤ 𝑗 ≤ 𝑛 − 2.
One also has other trivial solutions, when both sides of equation (74) are infinite:

𝑛 = 2𝑗 and 𝑘 odd, and 𝑛 = 2𝑘 and 𝑗 odd. Note that, in the latter case, 𝑘 > 2. Indeed, if
𝑘 = 2, then 𝑛 = 4, and since 2 ≤ 𝑗 ≤ 𝑛 − 2, we have 𝑗 = 2, contradicting that 𝑗 is odd.
Equation (74) appeared in [41] and in [3], and it was solved in [17]. This equation

has non-trivial solutions if and only if 𝑛 = 2(𝑗 + 𝑘) and 𝑛 divides (𝑗 − 1)(𝑘 − 1). This
completes the proof. □

Remark 5.3. As we know from Theorem 10, if 𝑛 is even and 𝑘 is odd, or if 𝑛 = 2𝑘, non-
trivial self-Bäcklund (𝑛, 𝑘)-gons indeed exist. The smallest values in case 3) of Theorem
11 are 𝑘 = 4, 𝑛 = 30. Does there exist a non-trivial self-Bäcklund (30, 4)-gon?

Remark 5.4. One wonders whether the symmetry between 𝑘 and 𝑗 in the formulation
of Theorem 11 corresponds to some kind of duality between self-Bäcklund (𝑛, 𝑘)- and
(𝑛, 𝑗)-gons.

6. Appendix: From the centroaffine plane to the hyperbolic plane

In this appendix we connect two geometries associated with the group SL2(ℝ), the
centroaffine and the hyperbolic ones.
Consider the 3-dimensional space of quadratic forms 𝑎𝑥2 + 2𝑏𝑥𝑦 + 𝑐𝑦2 with the

pseudo-Euclidean metric given by quadratic form 𝑏2 −𝑎𝑐, the negative of the determi-
nant of the quadratic form. The projectivization of the subspace of the positive-definite
forms is the hyperbolic plane 𝐻2; the degenerate forms comprise the circle at infinity.
In the modern literature, this approach to hyperbolic geometry was developed in [5].
In the coordinates (𝑢, 𝑣, 𝑤), such that

𝑎 = 𝑢 + 𝑣, 𝑏 = 𝑤, 𝑐 = 𝑢 − 𝑣,
one has the standard Minkowski metric 𝑣2 +𝑤2 −𝑢2. The unit-determinant quadratic
forms comprise the hyperboloid of two sheets, and the condition 𝑎 + 𝑐 > 0 describes
its upper half, the pseudo-sphere.
A “unit” central ellipse of area 𝜋 is an SL2(ℝ) image of the unit circle, given by an

equation of the form 𝑎𝑥2+2𝑏𝑥𝑦+𝑐𝑦2 = 1with 𝑎𝑐−𝑏2 = 1 and 𝑎+𝑐 > 0. This defines
a point of the hyperbolic plane 𝐻2 in the pseudo-sphere model.
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Likewise, a central hyperbola, which is an SL2(ℝ) image of the “unit” hyperbola
𝑥𝑦 = 1, is given by an equation of the form 𝑎𝑥2 + 2𝑏𝑥𝑦 + 𝑐𝑦2 = 1 with 𝑎𝑐 − 𝑏2 = −1.
It defines a point of the hyperboloid of one sheet.
Lemma 6.1. Let a unit central ellipse 𝑎𝑥2+2𝑏𝑥𝑦+𝑐𝑦2 = 1 and a unit central hyperbola
𝑎′𝑥2+2𝑏′𝑥𝑦+𝑐′𝑦2 = 1 be tangent at point (𝑥, 𝑦). Then the vectors (𝑎, 𝑏, 𝑐) and (𝑎′, 𝑏′, 𝑐′)
are orthogonal.
Proof. The group SL2(ℝ) acts transitively on the space of contact elements of the punc-
tured plane whose line does not pass through the origin. And it acts by isometries on
the space of quadratic forms. Therefore it suffices to consider the point (1, 0) and the
vertical direction. In this case the two conics are 𝑥2 + 𝑦2 = 1 and 𝑥2 − 𝑦2 = 1, and the
vectors (1, 0, 1) and (1, 0, −1) are indeed orthogonal. □

To a point (𝑥, 𝑦) of the punctured plane there corresponds the affine plane 𝑎𝑥2 +
2𝑏𝑥𝑦 + 𝑐𝑦2 = 1 in the 3-dimensional space of quadratic forms. The normal vector of
this plane is isotropic, and this plane lies above the origin. Hence its intersection with
the pseudo-sphere is a horocycle in𝐻2. The symmetric point (−𝑥,−𝑦) yields the same
horocycle.
To summarize, a point of the centroaffine plane is a horocycle in 𝐻2, and a unit

central ellipse is a point of 𝐻2.
Let 𝛾(𝑡) be a centroaffine curve. The osculating ellipse at a point (𝑥, 𝑦) = 𝛾(𝑡) is a unit

central ellipse tangent to 𝛾 at this point. As 𝑡 varies, one obtains a curve 𝛾∗(𝑡) ⊂ 𝐻2, the
dual curve of 𝛾. Due to the central symmetry of 𝛾, this curve closes up after 𝑡 is increased
by 𝜋. Equivalently, the curve 𝛾∗ is the envelope of the horocycles corresponding to the
points of the curve 𝛾.
Lemma 6.2. If [𝛾(𝑡), 𝛾′(𝑡)] = 1, then |𝛾∗(𝑡)′| = |1 + 𝑝(𝑡)|.
Proof. Let 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡)). Then 𝑥𝑦′ − 𝑥′𝑦 = 1.
The osculating ellipse at a point (𝑥, 𝑦) satisfies the equations

𝑎𝑥2 + 2𝑏𝑥𝑦 + 𝑐𝑦2 = 1, (𝑎𝑥 + 𝑏𝑦, 𝑏𝑥 + 𝑐𝑦) ⋅ (𝑥′, 𝑦′) = 0.
Taking 𝑎𝑐 − 𝑏2 = 1 into account, one solves these equations to obtain

𝑎 = 𝑦2 + 𝑦′2, 𝑏 = −(𝑥𝑦 + 𝑥′𝑦′), 𝑐 = 𝑥2 + 𝑥′2.
This is the equation of 𝛾∗.
Next, 𝑥″ = 𝑝𝑥, 𝑦″ = 𝑝𝑦. Then

(𝛾∗)′ = (1 + 𝑝)(2𝑦𝑦′, −(𝑥′𝑦 + 𝑥𝑦′), 2𝑥𝑥′),
and |(𝛾∗)′| = |1 + 𝑝|, as claimed. □

Let 𝑘 be curvature of the curve 𝛾∗.
Lemma 6.3. One has

𝑘 = 1 − 𝑝
1 + 𝑝 or (1 + 𝑝)(1 + 𝑘) = 2.

For example, when 𝛾 is a unit central ellipse with 𝑝 = −1, the dual curve is a point,
and the formula accordingly gives 𝑘 = ∞. If 𝛾 is a unit central hyperbola with 𝑝 = 1,
then the formula gives 𝑘 = 0. Indeed, Lemma 6.1 implies that 𝛾∗ is a straight line, the
intersection of the pseudo-sphere with the 2-dimensional subspace orthogonal to the
vector corresponding to this hyperbola.
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Proof. Let 𝜏 be the arc length parameter on 𝛾∗. Then 𝑑𝑡/𝑑𝜏 = 1/(1 + 𝑝).
The curvature is themagnitude of the projection of the vector𝑑2𝛾∗/𝑑𝜏2 on the pseudo-

sphere. If 𝑢 is a position vector of a point of the pseudo-sphere and 𝑣 is a vector with
foot point 𝑢, then the projection of 𝑢 is given by 𝑢 + (𝑢 ⋅ 𝑣)𝑣.
From Lemma 6.3, we know that

𝑑𝛾∗
𝑑𝜏 = (2𝑦𝑦′, −(𝑥′𝑦 + 𝑥𝑦′), 2𝑥𝑥′),

hence
𝑑2𝛾∗
𝑑𝜏2 = 1

1 + 𝑝(2𝑦𝑦
′, −(𝑥′𝑦 + 𝑥𝑦′), 2𝑥𝑥′)′ = 2

1 + 𝑝(𝑝𝑦
2 + 𝑦′2, −𝑝𝑥𝑦 − 𝑥′𝑦′, 𝑝𝑥2 + 𝑥′2).

Next,
𝑑𝛾∗
𝑑𝜏 ⋅ 𝛾∗ = 0 ⇒ 𝑑2𝛾∗

𝑑𝜏2 ⋅ 𝛾∗ + 𝑑𝛾∗
𝑑𝜏 ⋅ 𝑑𝛾

∗

𝑑𝜏 = 0 ⇒ 𝑑2𝛾∗
𝑑𝜏2 ⋅ 𝛾∗ = −1,

therefore the projection of 𝑑2𝛾∗/𝑑𝜏2 on the pseudo-sphere is
𝑑2𝛾∗
𝑑𝜏2 − 𝛾∗ = 2

1 + 𝑝(𝑝𝑦
2 + 𝑦′2, −𝑝𝑥𝑦 − 𝑥′𝑦′, 𝑝𝑥2 + 𝑥′2)−

(𝑦2 + 𝑦′2, −(𝑥𝑦 + 𝑥′𝑦′), 𝑥2 + 𝑥′2) = 1 − 𝑝
1 + 𝑝(𝑦

′2 − 𝑦2, 𝑥𝑦 − 𝑥′𝑦′, 𝑥′2 − 𝑥2),

and it remains to notice that the vector in the parentheses is unit. □

Remark 6.4. According to a theorem of E. Ghys, see [36], the potential 𝑝(𝑡) of the curve
𝛾 assumes the value -1 at least four times on the period [0, 𝜋). It follows that the curve
𝛾∗ has at least four cusps; in particular, it cannot be smooth.
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